精英家教网 > 高中数学 > 题目详情
8.等差数列{an}中,a1<0,S9=S12,若Sn有最小值,则n=(  )
A.10B.10或11C.11D.9或10

分析 由等差数列通项公式得a1=-10d,由此求出Sn=$\frac{d}{2}$n2-$\frac{21d}{2}n$,利用配方法能求出Sn有最小值时,n的值的求法.

解答 解:∵等差数列{an}中,a1<0,S9=S12
∴9a${\;}_{1}+\frac{9×8}{2}d$=12a1+$\frac{12×11}{2}d$,
解得a1=-10d,
∴Sn=na1+$\frac{n(n-1)}{2}d$=$\frac{d}{2}$n2-$\frac{21d}{2}n$=$\frac{d}{2}(n-\frac{21}{2})^{2}$-$\frac{441d}{8}$.
∵Sn有最小值,
∴n=10或n=11.
故选:B.

点评 本题考查等差数列的前n项和取最小值时项数n的值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.为了得到函数y=2cos2x的图象,可以将函数y=1+cosx图象上所有的点(  )
A.横坐标伸长到原来的2倍,纵坐标不变
B.横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变
C.纵坐标伸长到原来的2倍,横坐标不变
D.纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{m}$=(1,2),$\overrightarrow{n}$=(-3,2),若k$\overrightarrow{m}$+$\overrightarrow{n}$和$\overrightarrow{m}$-3$\overrightarrow{n}$互相垂直,则实数k的值为(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知变量x,y之间的线性回归方程为y=-x+13,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是(  )
x681012
y6m32
A.可以预测,当x=9时,y=4B.该回归直线必过点(9,4)
C.m=4D.m=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sinx+$\sqrt{3}$cosx.求:
(1)f(x)图象的对称中心的坐标;
(2)f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则|$\overrightarrow{2a}$-$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形的半径为2,面积为$\frac{2}{5}$π,则该扇形的圆心角为$\frac{π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求证:AA1⊥AC;
(2)求点B到面ACC1A1的距离.

查看答案和解析>>

同步练习册答案