精英家教网 > 高中数学 > 题目详情

【题目】设在平面上有两个向量a=(cos 2α,sin 2α)(0≤α<π),b=,ab不共线.

(1)求证:向量a+ba-b垂直;

(2)当向量a+ba-b的模相等时,α的大小.

【答案】(1)见解析;(2)α=α=.

【解析】试题分析:(1)计算 ,利用(+)·(-)=0即可证得垂直;

(2)由|+|=|-|两边平方,得3||2+2·+||2=||2-2·+3||2,,得sin=0,即可求角.

试题解析:

(1)由已知得==1, ==1,

则(+)·(-)=2-2=0,

所以+与a-垂直.

(2)由|+|=|-|两边平方,得3||2+2·+||2=||2-2·+3||2,

2(||2-||2)+4·=0.

而||=||,·=0.

cos 2α+sin 2α=0,即sin=0,

2α+=kπ(k∈Z).

又0≤α<π,∴α=α=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于两点.

1求椭圆的方程;

2若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ()的焦距为4,左、右焦点分别为,且 与抛物线 的交点所在的直线经过.

(Ⅰ)求椭圆的方程;

(Ⅱ)过 的直线 交于两点,与抛物线无公共点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:直线PB1⊥平面PAC.
(3)求三棱锥B﹣PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

(1)估计该技术指标值平均数

(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

同步练习册答案