精英家教网 > 高中数学 > 题目详情

【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪十二属相。现有十二生肖吉祥物各一件,甲、乙、丙三位同学一次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是( )

A.B.C.D.

【答案】A

【解析】

基本事件总数,这三位同学抽取的礼物都喜欢包含的基本事件个数,由此能求出这三位同学抽取的礼物都喜欢的概率.

解:现有十二生肖吉祥物各一件,甲、乙、丙三位同学依次随机抽取一件作为礼物,

甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,

基本事件总数

这三位同学抽取的礼物都喜欢包含的基本事件个数

这三位同学抽取的礼物都喜欢的概率是

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(Ⅰ)求曲线的普通方程和的直角坐标方程;

(Ⅱ)若相交于两点,设点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数)和定点是曲线的左、右焦点,以原点为极点,以轴的非负半轴为极轴且取相同单位长度建立极坐标系.

1)求直线的极坐标方程;

2)经过点且与直线垂直的直线交曲线两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,然后纵坐标不变,横坐标变为原来的倍,得到的图象,下面四个结论正确的是( )

A. 函数在区间上为增函数

B. 将函数的图象向右平移个单位后得到的图象关于原点对称

C. 是函数图象的一个对称中心

D. 函数上的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者根据调查结果统计后,得到如下列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为

非自学不足

自学不足

合计

配有智能手机

30

没有智能手机

10

合计

请完成上面的列联表;

根据列联表的数据,能否有的把握认为“自学不足”与“配有智能手机”有关?

附表及公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线l的参数方程为t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)若直线l与曲线C交于AB两点,为直线l上一点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】启东市政府拟在蝶湖建一个旅游观光项目,设计方案如下:如图所示的圆O是圆形湖的边界,沿线段AB,BC,CD,DA建一个观景长廊,其中A,B,C,D是观景长廊的四个出入口且都在圆O上,已知:BC=12百米,AB=8百米,在湖中P处和湖边D处各建一个观景亭,且它们关于直线AC对称,在湖面建一条观景桥APC.观景亭的大小、观景长廊、观景桥的宽度均忽略不计,设

1)若观景长廊AD4百米,CD=AB,求由观景长廊所围成的四边形ABCD内的湖面面积;

2)当时,求三角形区域ADC内的湖面面积的最大值;

3)若CD=8百米且规划建亭点P在三角形ABC区域内(不包括边界),试判断四边形ABCP内湖面面积是否有最大值?若有,求出最大值,并写出此时的值;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数不超过35人时,飞机票每张收费800元;若旅游团的人数多于35人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有60人.设旅行团的人数为人,飞机票价格为元,旅行社的利润为元.

(1)写出飞机票价格元与旅行团人数之间的函数关系式;

(2)当旅游团的人数为多少时,旅行社可获得最大利润?求出最大利润.

查看答案和解析>>

同步练习册答案