精英家教网 > 高中数学 > 题目详情
为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.
(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?
(1) 国家最少需要补贴万元,该工厂才能不会亏损;(2)30. 

试题分析:(1)本题考查函数应用,属于容易题,解题的关键是列出收益函数,收益等于收入减成本,因此有利润,化简后它是关于的二次函数,利用二次函数的知识求出的取值范围,如果有非负的取值,就能说明可能获利,如果没有非负取值,说明不能获利,而国家最小补贴就是中最大值的绝对值. (2)每吨平均成本等于,由题意,我们根据基本不等式的知识就可以求出它的最小值以及取最小值时的值. 
试题解析:(1)根据题意得,利润和处理量之间的关系:
                 2分
.
上为增函数,
可求得.                       5分
∴ 国家只需要补贴万元,该工厂就不会亏损.          7分
(2)设平均处理成本为                     9分
       11分
当且仅当时等号成立,由 得
因此,当处理量为吨时,每吨的处理成本最少为万元.      14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且
对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂拟在2014年通过广告促销活动推销产品.经调查测算,产品的年销售量(假定年产量=年销售量)万件与年广告费用万元满足关系式:为常数).若不做广告,则产品的年销售量恰好为1万件.已知2014年生产该产品时,该厂需要先固定投入8万元,并且预计生产每1万件该产品时,需再投入4万元,每件产品的销售价格定为每件产品所需的年平均成本的1.5倍(每件产品的成本包括固定投入和生产再投入两部分,不包括广告促销费用).
(1)将2014年该厂的年销售利润(万元)表示为年广告促销费用(万元)的函数;
(2)2014年广告促销费用投入多少万元时,该厂将获利最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数对任意都满足,且,数列满足:.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,试问数列是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题:函数的图象恒过定点;命题:若函数为偶函数,则函数的图象关于直线对称,则下列命题为真命题的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数,若,则的值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km时,车流速度为60km/h,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则(   )
A.2014B.C.2015D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数,若,则的值为      

查看答案和解析>>

同步练习册答案