精英家教网 > 高中数学 > 题目详情

如图,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.

(Ⅰ)求证:CE//平面ABF;
(Ⅱ)求证:BE⊥AF;
(Ⅲ)在直线BC上是否存在点M,使二面角E-MD-A的大小为?若存在,求出CM的长;若不存在,请说明理由.

(I)详见解析;(Ⅱ)详见解析;(Ⅲ)在BC上存在点M,且|CM|=

解析试题分析:(I)将直角梯形ABCD补为长方形(补为长方形,一切都好办了!),如图,作 FG∥EA,AG∥EF,连结EG交AF于H,连结BH,BG,由三角形的中位线可得BH∥CE,从而得CE∥面ABF.

(Ⅱ)空间中证线线垂直,一般先证线面垂直.那么在本题中,证哪条线垂直哪个面?结合(I)题易得BG⊥AF,AF⊥EG,由此得 AF⊥平面BGE,从而 AF⊥BE.(Ⅲ)思路一、由于AG、AE、AD两两垂直,故以A为原点,AG为x轴,AE为y轴,AD为z轴建立空间直角坐标系A-xyz.假设M(1,y0,0),然后看利用二面角E-MD-A的大小为能否求出y0,若能求出y0,则存在;不能求出y0,则不存在.
思路二、作出二面角的平面角也可.
试题解析:(I)证明:如图,作 FG∥EA,AG∥EF,连结EG交AF于H,连结BH,BG,

∵EF∥CD且EF=CD,
∴AG∥CD,
即点G在平面ABCD内.
由AE⊥平面ABCD知AE⊥AG,
∴四边形AEFG为正方形,
CDAG为平行四边形,                      2分
∴H为EG的中点,B为CG中点,
∴BH∥CE,
∴CE∥面ABF.                        4分
(Ⅱ)证明:∵ 在平行四边形CDAG中,∠ADC=90º,
∴BG⊥AG.
又由AE⊥平面ABCD知AE⊥BG,
∴BG⊥面AEFG,
∴BG⊥AF.                          6分
又∵AF⊥EG,
∴AF⊥平面BGE,
∴AF⊥BE.                          8分
(Ⅲ)解:如图,以A为原点,AG为x轴,AE为y轴,AD为z轴建立空间直角坐标系A-xyz.

则A(0,0,0),G(1,0,0),E(0,0,1),D(0,2,0),设M(1,y0,0),

设面EMD的一个法向量
令y=1,得
.                      10分
又∵
为面AMD的法向量,

解得
故在直线BC上存在点M,且|CM|=||=.         12分
法二、作,则,由等面积法得:.
考点:1、空间直线与平面的位置关系;2、二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1)如图所示,证明命题“a是平面π内的一条直线,bπ外的一条直线(b不垂直于π),c是直线bπ上的投影,若ab,则ac”为真.

(2)写出上述命题的逆命题,并判断其真假(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面为直角梯形,,

(1)求证:⊥平面
(2)求异面直线所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角。

(1)求证:平面A1B1C⊥平面B1BCC1
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

同步练习册答案