【题目】已知函数f(x)= ,函数g(x)=f(x)﹣k.
(1)当m=2时,若函数g(x)有两个零点,则k的取值范围是;
(2)若存在实数k使得函数g(x)有两个零点,则m的取值范围是 .
【答案】
(1)(4,8]
(2)(﹣∞,0)∪(1,+∞)
【解析】解:(1)当m=2时,分别画出y=f(x)与y=k的图象,如图所示, 若函数g(x)有两个零点,由图象可得4<k≤8,
故k的取值范围是(4,8]
⑵当m≥0时,y=x3在(﹣∞,m]为增函数,最大值为m3 ,
y=x2在(m,+∞)为增函数,最小值为m2 ,
若存在实数k使得函数g(x)有两个零点,则m3>m2 , 解得m>1,
当m<0时,y=x2在(m,0)上为减函数,在(0,+∞)为增函数,
故若存在实数k使得函数g(x)有两个零点,
综上所述m的取值范围为(﹣∞,0)∪(1,+∞),
所以答案是:(1):(4,8],(2):(﹣∞,0)∪(1,+∞)
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家和3个欧洲国家中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括但不包括的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品.已知生产一吨甲产品、一吨乙产品所需要的煤、电以及产值如表所示;又知道国家每天分配给该厂的煤和电力有限制,每天供煤至多56吨,供电至多45千瓦.问该厂如何安排生产,才能使该厂日产值最大?最大的产值是多少?
用煤(吨) | 用电(千瓦) | 产值(万元) | |
生产一吨 甲种产品 | 7 | 2 | 8 |
生产一吨 乙种产品 | 3 | 5 | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PD垂直正方形ABCD所在平面,AB=2,E是PB的中点, , >.
(1)建立适当的空间坐标系,求出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1=,.(1)证明:数列为等比数列,并求数列{an}的通项公式;(2)设cn=(3n+1)an,证明:数列{cn}中任意三项不可能构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn . 若对n∈N* , 总k∈N* , 使得Sn=ak , 则称数列{an}是“G数列”. (Ⅰ)若数列{an}是等差数列,其首项a1=1,公差d=﹣1.证明:数列{an}是“G数列”;
(Ⅱ)若数列{an}的前n项和Sn=3n(n∈N*),判断数列{an}是否为“G数列”,并说明理由;
(Ⅲ)证明:对任意的等差数列{an},总存在两个“G数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F为抛物线E:x2=4y的焦点,直线l为准线,C为抛物线上的一点(C在第一象限),以点C为圆心,|CF|为半径的圆与y轴交于D,F两点,且△CDF为正三角形.
(Ⅰ)求圆C的方程;
(Ⅱ)设P为l上任意一点,过P作抛物线x2=4y的切线,切点为A,B,判断直线AB与圆C的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com