(本小题满分12分)如图,已知平面,平面,△为等边三角形,,为的中点.
(1) 求证:平面;
(2) 求证:平面平面;
(3) 求直线和平面所成角的正弦值.
(1) 证法一:取的中点,连.
∵为的中点,∴且.
∵平面,平面,
∴,∴.
又,∴.
∴四边形为平行四边形,则.
∵平面,平面,
∴平面.
证法二:取的中点,连.
∵为的中点,∴.
∵平面,平面,∴.
又,
∴四边形为平行四边形,则.
∵平面,平面,
∴平面,平面.
又,∴平面平面.
∵平面,
∴平面.
(2) 证:∵为等边三角形,为的中点,∴.
∵平面,平面,∴.
又,故平面.
∵,∴平面.
∵平面,
∴平面平面. (3)
解:在平面内,过作于,连.
∵平面平面, ∴平面.
∴为和平面所成的角.
设,则,
,
R t△中,.
∴直线和平面所成角的正弦值为.
方法二:设,建立如图所示的坐标系,
则.
∵为的中点,∴.
(1) 证:,
∵,平面,∴平面.
(2) 证:∵,
∴,∴.
∴平面,又平面,
∴平面平面.
(3) 解:设平面的法向量为,由可得:
,取.
又,设和平面所成的角为,则
.
∴直线和平面所成角的正弦值为.
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com