精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\frac{1}{\sqrt{1-x}}$的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=(-1,1);M∪N=R.

分析 分别求解函数的定义域得到M,N,然后利用交集、并集运算得答案.

解答 解:由1-x>0,得x<1,∴M=(-∞,1);
由1+x>0,得x>-1,∴N=(-1,+∞).
∴M∩N=(-1,1);M∪N=R.
故答案为:(-1,1);R.

点评 本题考查函数的定义域及其求法,考查了交集、并集及其运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$x2-alnx(a为常数且a∈R).
(1)当a=1时求函数f(x)的单调区间;
(2)当x>1时,若$\frac{1}{2}$x2+lnx+b<$\frac{2}{3}$x3恒成立,求实常数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过抛物线y2=4x的焦点F作圆C:x2+y2-8x+m=0的切线,切点为M、N,且|MN|=$\frac{4\sqrt{2}}{3}$.
(1)求实数m的值:
(2)若m>12,直线l经过点F,与抛物线交于点A、B,是否存在直线l,使AB为直径的圆与圆C外切,若存在,求出直线l的方程;若不存在,请说明则由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C:$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t为参数).
(1)求曲线C,直线l的普通方程;
(2)直线1与曲线C交于P,Q两点,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求双曲线C:x2-$\frac{{y}^{2}}{64}$=1经过φ:$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$变换后所得曲线C′的焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=-2x+1,当x∈R时,f(x)=$\left\{\begin{array}{l}{2}^{-x}-1,x≤0\\-{2}^{x}+1,x>0\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{2x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,则b=(  )
A.-1B.-$\frac{2}{3}$C.-1或-$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=kx3+$\frac{2}{x}$-2(k∈R),f(lg5)=1,则f(lg$\frac{1}{5}$)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.直线l过直线x+y-2=0与x-y-4=0的交点且平行与直线x-3y-1=0,求直线l的一般式方程.

查看答案和解析>>

同步练习册答案