精英家教网 > 高中数学 > 题目详情
本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.
已知,,为△ABC的三个内角,向量,且
(1)求的大小;
(2)若,求△ABC的面积.
(1)由,可得·=0,          ………………2分
·,又
所以
,又,                       ………………6分
,故.         ………………8分
(2)在△ABC中,由
 可得,            ………………10分

,                                      ………………12分
.          ………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

等腰中,的中点, 点在
的内部或其边界上运动,则的范围是 (  )
                                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

某体育馆拟用运动场的边角地建一个矩形的健身室(如图所示),ABCD是一块边长为50 m的正方形地皮,扇形CEF是运动场的一部分,其半径为40 m,矩形AGHM就是拟建的健身室,其中GM分别在ABAD上,H在  上。设矩形AGHM的面积为S,∠HCF=θ,请将S表示为θ的函数,并指出当点H在   的何处时,该健身室的面积最大,最大面积是多少? 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲船在A处观察到乙船在它的北偏东的方向,两船相距海里,乙船正在向北行驶,若甲船的速度是乙船的倍,甲船为了尽快追上乙船,应取北偏东方向前进,则
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分别为AB,CD的中点,AE的延长线交CB于F。现将△ACD沿CD折起, 折成二面角A—CD—B,连接AF。

(I)求证:平面AEF⊥平面CBD;
(II)当AC⊥BD时,求二面角A—CD—B大小的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
中,已知内角,设内角,周长为
(1)求函数的解析式和定义域;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,三点在地面同一直线上,,从两点测得点仰角分别是,则点离地面的高度等于( ▲ )
                           
A.    B.   C     D .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,,则的面积等于    (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中,角A,B,C的对边分别为,若,则角B的值为           

查看答案和解析>>

同步练习册答案