【题目】设 ,且满足cosa=a,sin(cosb)=b,cos(sinc)=c,则a,b,c的大小关系为 .
【答案】b<a<c
【解析】解:先证明当x∈(0, )时,sinx<x
设y=sinx﹣x,则y′=cosx﹣1<0,∴y=sinx﹣x为(0, )上的减函数,∴y<sino﹣0=0,即sinx<x
同理可证明f(x)=sin(cosx)﹣x为(0, )上的减函数,g(x)=cos(sinx)﹣x为(0, )上的减函数
∵sina<a
∴cos(sina)﹣a=cos(sina)﹣cosa>0,而cos(sinc)﹣c=0,
∴g(a)>g(c),a、c∈(0, ),
∴a<c
同理∵x∈(0, )时,sinx<x,∴sin(cosa)<cosa
∴sin(cosa)﹣a=sin(cosa)﹣cosa<0,而sin(cosb)﹣b=0
∴f(a)<f(b),a、b∈(0, ),
∴a>b
综上所述,b<a<c
所以答案是b<a<c.
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为 . (Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为( )
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知倾斜角60°为的直线l平分圆:x2+y2+2x+4y﹣4=0,则直线l的方程为( )
A. x﹣y+ +2=0
B. x+y+ +2=0
C. x﹣y+ ﹣2=0
D. x﹣y﹣ +2=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.奇函数f(x)的图象经过(0,0)点
B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函数
C.幂函数y=x 过(1,1)点
D.y=sin2x(x∈[0,5π])是以π为周期的函数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com