精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4 cosθ.
(1)求C1与C2交点的直角坐标;
(2)已知曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

【答案】
(1)解:曲线C1的参数方程为 (φ为参数),

消去参数可得:x2+(y﹣2)2=4.

曲线C2的极坐标方程为ρ=4 cosθ,即ρ2=4 ρcosθ,

化为直角坐标方程:x2+y2=4 x.

联立

解得

∴C1与C2交点的直角坐标分别为:(0,0);


(2)解:曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0),

时,可得 ,代入方程:x2+(y﹣2)2=4,解得t=0,t=4.

代入:x2+y2=4 x,解得t=0,不满足|PQ|=8,舍去.

时,消去参数化为普通方程:y=xtanα,设k=tanα.

联立 ,解得

可得P(0,0),或P

联立 ,解得

可得Q(0,0),或Q

∵|PQ|=8,∴只能取P ,Q

+ =82

化为: =0,解得k=﹣


【解析】(1)曲线C1的参数方程为 (φ为参数),消去参数可得普通方程.曲线C2的极坐标方程为ρ=4 cosθ,即ρ2=4 ρcosθ,利用互化公式可得直角坐标方程,联立解出即可得出.(2)曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0), 时,不满足|PQ|=8,舍去. 时,消去参数化为普通方程:y=xtanα,设k=tanα,即直线l的方程为:y=kx,分别与曲线C1 , C2的方程联立解出交点P,Q的坐标,利用两点之间的距离公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高二年级共有1600人,现统计他们某项任务完成时间介于30分钟到90分钟之间,图中是统计结果的频率分布直方图.

(1)求平均值、众数、中位数;

(2)若学校规定完成时间在分钟内的成绩为等;完成时间在分钟内的成绩为等;完成时间在分钟内的成绩为等,按成绩分层抽样从全校学生中抽取10名学生,则成绩为等的学生抽取人数为?

(3)在(2)条件下抽取的成绩为等的学生中再随机选取两人,求两人中至少有一人完成任务时间在分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf'(x)+f(x)<0恒成立,则不等式xf(x)>0的解集是(
A.(﹣2,0)∪(2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.

(1)求圆C的普通方程和直线的直角坐标方程;

(2)点P是圆C上任一点,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人的各科成绩如茎叶图所示,则下列说法正确的是(
A.甲的中位数是89,乙的中位数是98
B.甲的各科成绩比乙各科成绩稳定
C.甲的众数是89,乙的众数是98
D.甲、乙二人的各科成绩的平均分不相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采取随机抽样的方法抽取了名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为组: ,得到如图所示的频率分布直方图:

1)写出的值;

2)求抽取的名学生中月上网次数不少于次的学生的人数;

3)在抽取的名学生中,从月上网次数少于次的学生中随机抽取人,求至少抽取到名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二项式( n展开式中的各项系数的绝对值之和为128.
(1)求展开式中系数最大的项;
(2)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证: (Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在极坐标系中,点O(0,0), .

(1)求以为直径的圆的直角坐标方程;

(2)若直线的极坐标方程为,判断直线与圆的位置关系.

查看答案和解析>>

同步练习册答案