精英家教网 > 高中数学 > 题目详情
10.已知O为坐标原点,M是双曲线C:x2-y2=4上的任意一点,过点M作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为(  )
A.1B.2C.4D.5

分析 设M(m,n),即有m2-n2=4,求出双曲线的渐近线为y=±x,运用点到直线的距离公式,结合勾股定理可得|ON|,化简整理计算即可得到所求值.

解答 解:设M(m,n),即有m2-n2=4,
双曲线的渐近线为y=±x,
可得|MN|=$\frac{|m-n|}{\sqrt{2}}$,
由勾股定理可得|ON|=$\sqrt{|OM{|}^{2}-|MN{|}^{2}}$=$\sqrt{{m}^{2}+{n}^{2}-\frac{(m-n)^{2}}{2}}$=$\frac{|m+n|}{\sqrt{2}}$,
可得|ON|•|MN|=$\frac{|m+n|}{\sqrt{2}}$•$\frac{|m-n|}{\sqrt{2}}$=$\frac{|{m}^{2}-{n}^{2}|}{2}$=2.
故选:B.

点评 本题考查双曲线的方程和性质,主要考查渐近线方程的运用,注意点满足双曲线的方程,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

已知复数,则复数的虚部为

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,过圆O外一点P作一条直线与圆O交于A,B两点,若PA=2,点P到圆O的切线PC=4,弦CD平分弦AB于点E,且DB∥PC,则CE等于(  )
A.3B.4C.3$\sqrt{2}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{\begin{array}{l}x≥1\\ x-2y+9≥0\\ x-y≤0\end{array}\right.$,则z=4x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,点P是椭圆C1和双曲线C2的一个公共点,若|PF2|=2,则椭圆C1的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的首项a1=1,且满足对任意的a1=1,都有an+1-an≤2n,an+2-an≥3×2n成立,则a2015=22015-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若m,n代表不同的直线,α,β代表不同的平面,则下列命题中,正确的是哪一个(  )
A.若m⊥n,n∥α,则m⊥αB.若m∥α,n∥β,则m∥nC.若α∥β,m?α,则m∥βD.若m∥α,α⊥β,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.5名同学分别报名参加学校的排球队、足球队、篮球队、乒乓球队,每人限报其中的一个运动队,不同报法的种数是(  )
A.$A_5^4$B.54C.45D.4×5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=$\frac{16}{5}$,f(3β+$\frac{5π}{2}$)=-$\frac{20}{13}$,其中α,β∈[0,$\frac{π}{2}$],则cos(α-β)的值为(  )
A.$\frac{13}{65}$B.$\frac{15}{65}$C.$\frac{48}{65}$D.$\frac{63}{65}$

查看答案和解析>>

同步练习册答案