【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
【答案】(1)证明见解析(2)或
【解析】
(1)联立直线与抛物线的方程,利用根于系数关系,结合斜率表达式求得即可;
(2)由(1)可知,圆是以为直径的圆且圆的方程可化简为,联立圆与抛物线的方程得到,圆与抛物线有四个不同的交点等价于
解:(1)证明:依题意有,直线,
设,,,,直线与抛物线相交,
联立方程消去,化简得,
所以,.
又因为,所以直线的斜率.
同理,直线的斜率,
所以,,
所以,直线,即.
(2)由(1)可知,圆是以为直径的圆,
设是圆上的一点,则,
所以,圆的方程为,
又因为,
所以,圆的方程可化简为,
联立圆与抛物线得
消去,得,
即,即,
若方程与方程有相同的实数根,
则,矛盾,
所以,方程与方程没有相同的实数根,
所以,圆与抛物线有四个不同的交点等价于,
综上所述,.
科目:高中数学 来源: 题型:
【题目】数列{2n﹣1}的前n项1,3,7,…,2n﹣1组成集合(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,,我们知道当a取不同的值时,得到不同的数列.如当时,得到无穷数列:0,,,,…,当时,得到有穷数列:,,1.
(1)当a为何值时,;
(2)设数列满足,,求证:a取中的任一数,都可以得到一个有穷数列;
(3)是否存在实数a,使得到的是无穷数列,且对于任意,都有成立,若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )
A.1150B.1380C.1610D.1860
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】垃圾种类可分为可回收垃圾、干垃圾、湿垃圾、有害垃圾等,为调查中学生对垃圾分类的了解程度,某调查小组随机从本市一中高一的名学生(其中女生人)中,采用分层抽样的方法抽取名学生进行调查,已知抽取的名学生中有男生人、
(1)求值及抽到的女生人数;
(2)调查小组请这名学生指出生活中若干项常见垃圾的种类,把能准确分类不少于项的称为“比较了解”,少于三项的称为“不太了解”,调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
男生(人) | 4 | 22 | 34 | 18 | 16 | 10 | 6 |
女生(人) | 0 | 15 | 20+m | 20 | 16 | 9 | m |
求值,完成如下列联表,并判断是否有的把握认为学生对垃圾分类的了解程度与性别有关?
不太了解 | 比较了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
(3)在(2)条件下,从抽取的“比较了解”的学生中仍采用分层抽样的方法抽取名.再从这名学生中随机抽取人作义务讲解员,求抽取的人中至少一名女生的概率.
参考数据:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由个不同的数构成的数列中,若时,(即后面的项小于前面项),则称与构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为;同理,等比数列的逆序数为.
(1)计算数列的逆序数;
(2)计算数列()的逆序数;
(3) 已知数列的逆序数为,求的逆序数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右顶点、上顶点分别为A、B,坐标原点到直线AB的距离为,且.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点的直线交椭圆于M、N两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.
(1)求椭圆的标准方程;
(2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com