精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于两点,抛物线在点处的切线分别为,两条切线的交点为

1)证明:

2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.

【答案】(1)证明见解析(2)

【解析】

1)联立直线与抛物线的方程,利用根于系数关系,结合斜率表达式求得即可;

2)由(1)可知,圆是以为直径的圆且圆的方程可化简为,联立圆与抛物线的方程得到,圆与抛物线有四个不同的交点等价于

解:(1)证明:依题意有,直线

,直线与抛物线相交,

联立方程消去,化简得

所以,

又因为,所以直线的斜率

同理,直线的斜率

所以,

所以,直线,即

(2)由(1)可知,圆是以为直径的圆,

是圆上的一点,则

所以,圆的方程为

又因为

所以,圆的方程可化简为

联立圆与抛物线

消去,得

,即

若方程与方程有相同的实数根

,矛盾,

所以,方程与方程没有相同的实数根,

所以,圆与抛物线有四个不同的交点等价于

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{2n1}的前n1372n1组成集合nN*),从集合An中任取kk=123n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1}T1=1S1=1;当n=2时,A2={13}T1=1+3T2=1×3S2=1+3+1×3=7,试写出Sn=__.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,我们知道当a取不同的值时,得到不同的数列.如当时,得到无穷数列:0,当时,得到有穷数列:1.

1)当a为何值时,

2)设数列满足,求证:a中的任一数,都可以得到一个有穷数列

3)是否存在实数a,使得到的是无穷数列,且对于任意,都有成立,若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象与轴无交点,求的取值范围;

(2)若函数上存在零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】垃圾种类可分为可回收垃圾、干垃圾、湿垃圾、有害垃圾等,为调查中学生对垃圾分类的了解程度,某调查小组随机从本市一中高一的名学生(其中女生人)中,采用分层抽样的方法抽取名学生进行调查,已知抽取的名学生中有男生人、

(1)求值及抽到的女生人数;

(2)调查小组请这名学生指出生活中若干项常见垃圾的种类,把能准确分类不少于项的称为“比较了解”,少于三项的称为“不太了解”,调查结果如下:

0

1

2

3

4

5

5项以上

男生(人)

4

22

34

18

16

10

6

女生(人)

0

15

20+m

20

16

9

m

,完成如下列联表,并判断是否有的把握认为学生对垃圾分类的了解程度与性别有关?

不太了解

比较了解

合计

男生

女生

合计

(3)在(2)条件下,从抽取的“比较了解”的学生中仍采用分层抽样的方法抽取名.再从这名学生中随机抽取人作义务讲解员,求抽取的人中至少一名女生的概率.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个不同的数构成的数列中,若时,(即后面的项小于前面项),则称构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列321,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列321的逆序数为;同理,等比数列的逆序数为

1)计算数列的逆序数;

2)计算数列)的逆序数;

3 已知数列的逆序数为,求的逆序数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点、上顶点分别为AB,坐标原点到直线AB的距离为,且.

1)求椭圆C的方程;

2)过椭圆C的左焦点的直线交椭圆于MN两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.

1)求椭圆的标准方程;

2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案