精英家教网 > 高中数学 > 题目详情

已知抛物线y2=2px(p>0)过焦点F的任一条弦AB,设A(x1,y1),B(x2,y2)且y1>0,y2<0
(1)若y1y2=-4,求抛物线方程;
(2)是否存在常数λ,使数学公式=λ,若存在,求出λ的值,并给予证明,若不存在,请说明理由;
(3)在抛物线对称轴(ox的正方向)上是否存在一定点M,经过点M的任意一条弦AB,使数学公式为定值,若存在,则求出定点M的坐标和定值,若不存在,请说明理由.

解:(1)设代入y2=2px,得y2-2py-p2=0,∴y1y2=-p2=-4,∴p=2,∴抛物线方程y2=4x;
(2)①当AB⊥x轴时,=
②一般地,FA=,FB=
(3)假设存在定点M(x0,0)(x0>0)
①当AB⊥x轴时,可得,M(p,0)
②一般地,设AB:x=ty+p代入y2=2px,得y2-2pty-2p2=0,∴y1y2=-2p2,y1+y2=2pt,
∵MA2=(1+t2)y12,MB2=(1+t2)y22,∴得证.
分析:(1)先设AB的方程代入y2=2px,利用条件y1y2=-4,可求抛物线方程;(2)利用抛物线的定义表示出FA,FB,再进行求解;(3)设AB:x=ty+p代入y2=2px,从而表示出MA2=(1+t2)y12,MB2=(1+t2)y22,进而得证.
点评:本题主要考查是否存在性命题,通常可以借助于特殊情形,猜想结论,再进行一般性德证明,要充分利用抛物线过焦点弦的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案