精英家教网 > 高中数学 > 题目详情
设f(x)=log2x的反函数为y=f-1(x),若f-1(a)=
1
4
,则a等于(  )
A、
1
2
B、-
1
2
C、2
D、-2
分析:根据原函数和反函数的性质知:反函数的值域是原函数的定义域,即把x=
1
4
代入f(x)=log2x,求出a的值.
解答:解:∵f(x)=log2x的反函数为y=f-1(x),
又知f-1(a)=
1
4

iog
1
4
2
=a,
解得a=-2,
故选D.
点评:本题主要考查反函数的知识点,解答本题的关键是同学们要知道反函数的值域是原函数的定义域这一知识点,基础题比较简单.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
log2(x-1)(x≥2)
(
1
2
)x-1(x<2)
,则f[f(3)]的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=log2(x+4)的反函数为f-1(x),[f-1(m)+4]•[f-1(n)+4]=16,则f(m+n)=
3
3

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省宜昌一中、枝江一中、当阳一中三校联考高一(上)期末数学试卷(解析版) 题型:填空题

设f(x)=log2(x+4)的反函数为f-1(x),[f-1(m)+4]•[f-1(n)+4]=16,则f(m+n)=   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
log2(x-1)(x≥2)
(
1
2
)x-1(x<2)
,则f[f(3)]的值为(  )
A.
1
2
B.-
1
2
C.0D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)=log2(x+4)的反函数为f-1(x),[f-1(m)+4]•[f-1(n)+4]=16,则f(m+n)=______.

查看答案和解析>>

同步练习册答案