精英家教网 > 高中数学 > 题目详情
15.某公司生产甲,乙两种桶装产品.已知生产甲产品1桶需消耗A原料1千克、B原料2千克;生产乙产品1桶需消耗A原料2千克、B原料1千克.每桶甲产品利润300元,每桶乙产品利润400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.那么该公司每天如何生产获得利润最大?最大利润是多少?(作出图象)

分析 根据题设中的条件可设每天生产甲种产品x桶,乙种产品y桶,根据题设条件得出线性约束条件以及目标函数求出利润的最大值即可.

解答 解:设分别生产甲乙两种产品为x桶,y桶,利润为z元
则根据题意可得$\left\{\begin{array}{l}{x+2y≤12}\\{2x+y≤12}\\{x,y≥0且x,y∈N}\end{array}\right.$,z=300x+400y
作出不等式组表示的平面区域,如图所示
作直线L:3x+4y=0,然后把直线向可行域平移,
由$\left\{\begin{array}{l}{x+2y=12}\\{2x+y=12}\end{array}\right.$可得x=y=4,
此时z最大z=2800.

点评 本题考查用线性规划知识求利润的最大值,这是简单线性规划的一个重要运用,解题的关键是准确求出目标函数及约束条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求过点(3,2)且与椭圆4x2+9y2=36有相同焦点的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算:${∫}_{-2}^{2}({x}^{3}+\sqrt{4-{x}^{2}})dx$=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对任意实数x,若不等式x+|3x-2a|≥3恒成立,则实数a的取值范围是[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{a•2^x+a-2}{2^x+1}$是定义在[-2,2]上的奇函数.
(1)求实数a的值,并求f(1)的值;
(2)证明:f(x)在定义域上为增函数;
(3)解不等式f(2x-1)<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.方程组$\left\{\begin{array}{l}3x+5y+6=0\\ 4x-3y-7=0\end{array}\right.$的增广矩阵是$[\begin{array}{l}{3}&{5}&{-6}\\{4}&{-3}&{7}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{c}_{1}}\\{3}&{2}&{{c}_{2}}\end{array})$,解为$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,则c1-c2=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个空间几何体的三视图如图所示,其中正视图与左视图上方均为等边三角形,根据图中数据:
(1)求三棱锥外接球表面积
(2)求该几何体的表面积
(3)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.现将甲、乙两名学生的6次模拟测试成绩(百分制)制成如图所示的茎叶图:
(Ⅰ)若对甲、乙两人各再模拟测试6次,试估算6次测试成绩中甲、乙两人的成绩位于(80,100)内的次数;
(Ⅱ)现对甲、乙两人作最后一次模拟测试,求甲、乙两人的成绩至少有一人位于(80,100)内的概率.

查看答案和解析>>

同步练习册答案