(本小题满分12分)
已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.
(1)求椭圆的方程;
(2)设直线 与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.
(1)
(2)
【解析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的综合运用。
(1)因为椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.
结合椭圆的性质和线与圆的位置关系得到参数a,b,c的表达式,得到椭圆的方程。
(2)根据直线方程与椭圆方程联立方程组,结合韦达定理表示出点P的坐标,然后点P在椭圆上得到参数的关系式,,利用m的范围得到op 的范围。
解:(1)由得,所以……………………1分
所以,有,解得………..5分
所以,所以椭圆方程为 …………………………….6分
(2), 消去得:
设
则, ,
故点…………………………………………………9分
点在椭圆上,有,整理得
所以,
而 ,………….11分
因为 ,所以,所以 ,
所以…………………………………………………………….12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com