【题目】下列命题中,假命题的是( )
A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交.
B.平行于同一平面的两条直线一定平行.
C.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面.
D.若直线不平行于平面,且不在平面内,则在平面内不存在与平行的直线.
科目:高中数学 来源: 题型:
【题目】若两直线的倾斜角分别为 与,则下列四个命题中正确的是( )
A. 若<,则两直线的斜率:k1 < k2 B. 若=,则两直线的斜率:k1= k2
C. 若两直线的斜率:k1 < k2 ,则< D. 若两直线的斜率:k1= k2 ,则=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,一条准线方程为
⑴求椭圆的方程;
⑵设为椭圆上的两个动点,为坐标原点,且.
①当直线的倾斜角为时,求的面积;
②是否存在以原点为圆心的定圆,使得该定圆始终与直线相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对于曲线f(x)=-ex-x(e为自然对数的底数)的任意切线l1,总存在曲线g(x)=ax+2cosx的切线l2,使得l1⊥l2,则实数a的取值范围为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命/材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
经甲公司测算平均每包新型材料每月可以带来万元收入,不考虑除采购成本之外的其他成本,材料每包的成本为万元, 材料每包的成本为万元.假设每包新型材料的使用寿命都是整月数,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:,
参考公式:回归直线方程,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 | 12月2日 | 12月3日 | 12月4日 |
温差() | 11 | 13 | 12 |
发芽数(颗) | 25 | 30 | 26 |
(1)请根据12月2日至12月4日的数据,求出关于的线性回归方程;
(2)该农科所确定的研究方案是:先用上面的3组数据求线性回归方程,再选取2组数据进行检验.若12月5日温差为,发芽数16颗,12月6日温差为,发芽数23颗.由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
注:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com