分析 (1)利用x∈(0,+∞),可得函数非奇非偶;
(2)求出函数的解析式,利用导数,研究函数的单调性.
解答 解:(1)∵f(x)=x-$\frac{1}{{x}^{m}}$,x∈(0,+∞),且f(3)=$\frac{8}{3}$,
∴3-$\frac{1}{{3}^{m}}$=$\frac{8}{3}$,
∴m=1,
∴f(x)=x-$\frac{1}{x}$,
∵x∈(0,+∞),
∴函数非奇非偶;
(2)f′(x)=1-$\frac{1}{{x}^{2}}$,
∴x∈(0,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函数的单调减区间是(0,1),单调增区间是(1,+∞).
点评 本题考查函数的单调性、奇偶性,考查函数解析式的确定,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com