【题目】如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(1)写出y关于x的函数关系式,并指出这个函数的定义域.
(2)当AE为何值时,绿地面积最大?
【答案】
(1)解:S△AEH=S△CFG= x2,\
S△BEF=S△DGH= (a﹣x)(2﹣x).\
∴y=SABCD﹣2S△AEH﹣2S△BEF=2a﹣x2﹣(a﹣x)(2﹣x)=﹣2x2+(a+2)x.\
由 ,得0<x≤2\
∴y=﹣2x2+(a+2)x,0<x≤2
(2)解:当 ,即a<6时,则x= 时,y取最大值 .\
当 ≥2,即a≥6时,y=﹣2x2+(a+2)x,在(0,2]上是增函数,
则x=2时,y取最大值2a﹣4\
综上所述:当a<6时,AE= 时,绿地面积取最大值 ;
当a≥6时,AE=2时,绿地面积取最大值2a﹣4
【解析】(1)先求得四边形ABCD,△AHE的面积,再分割法求得四边形EFGH的面积,即建立y关于x的函数关系式;(2)由(1)知y是关于x的二次函数,用二次函数求最值的方法求解.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆: 的圆心.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线, ,当直线, 都与圆相切时,求的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)画出这个函数的图象;
(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(3)求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足:对任意的x1 , x2∈R(x1≠x2),有 <0,则( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017湖南长沙二模】已知椭圆()的离心率为,分别是它的左、右焦点,且存在直线,使关于的对称点恰好是圆()的一条直线的两个端点.
(1)求椭圆的方程;
(2)设直线与抛物线()相交于两点,射线,与椭圆分别相交于点,试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017福建三明5月质检】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.
(Ⅰ)求椭圆的方程;
(Ⅱ)若与轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点,离心率 ,且其中一个焦点与抛物线 的焦点重合.
(1)求椭圆C的方程;
(2)过点S( ,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com