分析 利用已知条件求出数列是前两项,然后判断所求数列的特征,利用求和公式转化求解前n项和即可.
解答 解:因为数列{an}的前n项之和为Sn=3+2n,a1=5,a2=2,
an=Sn-Sn-1,n≥2,又Sn=2n+3,
所以an=2n-2n-1=2n-1所以,an2=4n-1是从第二项起是等比数列;
设An=a12+a22+a32+…+an2,
由等比数列前n项和a12+a22+a32+…+an2=a12+$\frac{{{a}_{2}}^{2}(1-{q}^{n-1})}{1-q}$,q=4.
解得a12+a22+a32+…+an2=25+$\frac{4({4}^{n-1}-1)}{3}$=$\frac{{4}^{n}+71}{3}$.
故答案为:$\frac{{4}^{n}+71}{3}$.
点评 此题主要考查数列的求和问题,其中应用到由前n项和求数列通项和等比数列的前n项和公式,这些都需要理解并记忆.
科目:高中数学 来源: 题型:选择题
A. | n=45,p=$\frac{2}{3}$ | B. | n=45,p=$\frac{1}{3}$ | C. | n=90,p=$\frac{1}{3}$ | D. | n=90,p=$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(0,\frac{1}{4})$ | B. | $(\frac{1}{3},3)$ | C. | (1,2) | D. | $(2,\frac{9}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x=1,则x2+x-2=0”的否命题是假命题 | |
B. | 命题“存在一个实数x,使不等式x2-3x+4<0成立”为真命题 | |
C. | 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | |
D. | 过点(0,2)与抛物线y2=8x只有一个公共点的直线有3条 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直角三角形 | B. | 等腰三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,1] | B. | (-1,1] | C. | (-1,1) | D. | [-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com