精英家教网 > 高中数学 > 题目详情
14.如果数列{an}的前n项之和为Sn=3+2n,那么a12+a22+a32+…+an2=$\frac{{4}^{n}+71}{3}$.

分析 利用已知条件求出数列是前两项,然后判断所求数列的特征,利用求和公式转化求解前n项和即可.

解答 解:因为数列{an}的前n项之和为Sn=3+2n,a1=5,a2=2,
an=Sn-Sn-1,n≥2,又Sn=2n+3,
所以an=2n-2n-1=2n-1所以,an2=4n-1是从第二项起是等比数列;
设An=a12+a22+a32+…+an2
由等比数列前n项和a12+a22+a32+…+an2=a12+$\frac{{{a}_{2}}^{2}(1-{q}^{n-1})}{1-q}$,q=4.
解得a12+a22+a32+…+an2=25+$\frac{4({4}^{n-1}-1)}{3}$=$\frac{{4}^{n}+71}{3}$.
故答案为:$\frac{{4}^{n}+71}{3}$.

点评 此题主要考查数列的求和问题,其中应用到由前n项和求数列通项和等比数列的前n项和公式,这些都需要理解并记忆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则n,p分别等于(  )
A.n=45,p=$\frac{2}{3}$B.n=45,p=$\frac{1}{3}$C.n=90,p=$\frac{1}{3}$D.n=90,p=$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点M(x0,1),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y+2=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2017的值为$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}{e^{|x-1|}}\;\;,\;x>0\\-{x^2}-2x+1\;,x≤0\end{array}\right.$,若关于x的方程f2(x)-3f(x)+a=0(a∈R)有8个不等的实数根,则a的取值范围是(  )
A.$(0,\frac{1}{4})$B.$(\frac{1}{3},3)$C.(1,2)D.$(2,\frac{9}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中错误的是(  )
A.命题“若x=1,则x2+x-2=0”的否命题是假命题
B.命题“存在一个实数x,使不等式x2-3x+4<0成立”为真命题
C.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
D.过点(0,2)与抛物线y2=8x只有一个公共点的直线有3条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,且${cos^2}\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.直角三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3-12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是(  )
A.[-1,1]B.(-1,1]C.(-1,1)D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1:2x+y+4=0,l2:ax+4y+1=0.
(1)当l1⊥l2时,求l1与l2的交点坐标;
(2)当l1∥l2时,求l1与l2间的距离.

查看答案和解析>>

同步练习册答案