精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,则下列表述:

平面

②四点可能共面;

③若,则平面平面

④平面与平面可能垂直.其中正确的是__________.

【答案】①③

【解析】

连接交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.

对于命题①,连接交于点,取的中点,连接,如下图所示:

,四边形是矩形,且的中点,

的中点,

四边形为平行四边形,,即

平面平面平面,命题①正确;

对于命题②,平面平面平面

若四点共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得

,但四边形为梯形且为两腰,相交,矛盾.

所以,命题②错误;

对于命题③,连接,设,则

中,,则为等腰直角三角形,

,且

由余弦定理得

,又平面

平面

为平面内的两条相交直线,所以,平面

平面平面平面,命题③正确;

对于命题④,假设平面与平面垂直,过点在平面内作

平面平面,平面平面平面

平面

平面

平面平面.

平面平面.

,显然不垂直,命题④错误.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的方程是: ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)设过原点的直线与曲线交于 两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点

)求椭圆的方程;

)是否存在过点的直线相交于不同的两点,满足

若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是各项不为零的数列,且满足,其中是数列的前项和,是公差为的等差数列.

1)若数列的通项公式分别为,求数列的通项公式;

2)若是不为零的常数),求证:数列是等差数列;

3)若为常数,),),对任意,求出数列的最大项(用含式子表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的图象如图所示,过点

)求函数的单调递减区间和极大值点;

)求实数的值;

)若恰有两个零点,请直接写出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调减函数是奇函数,当时,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且有极大值.

(Ⅰ)求的解析式;

(Ⅱ)若的导函数,不等式为正整数)对任意正实数恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).

(1)求事件在一次试验中,得到的数为虚数”的概率与事件在四次试验中,

至少有两次得到虚数” 的概率

(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望

查看答案和解析>>

同步练习册答案