A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,e) |
分析 f(x)=xlnx-ax2(x>0),f′(x)=lnx+1-2ax.令g(x)=lnx+1-2ax,由于函数f(x)=x(lnx-ax)有两个极值点?g(x)=0在区间(0,+∞)上有两个实数根.求出g(x)的导数,当a≤0时,直接验证;当a>0时,利用导数研究函数g(x)的单调性可得,要使g(x)有两个不同解,只需要g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,解得即可.
解答 解:f(x)=xlnx-ax2(x>0),f′(x)=lnx+1-2ax.
令g(x)=lnx+1-2ax,
∵函数f(x)=x(lnx-ax)有两个极值点,则g(x)=0在区间(0,+∞)上有两个实数根.
g′(x)=$\frac{1}{x}$-2a=$\frac{1-2ax}{x}$,
当a≤0时,g′(x)>0,则函数g(x)在区间(0,+∞)单调递增,因此g(x)=0在区间(0,+∞)上不可能有两个实数根,应舍去.
当a>0时,令g′(x)=0,解得x=$\frac{1}{2a}$,
令g′(x)>0,解得0<x<$\frac{1}{2a}$,此时函数g(x)单调递增;
令g′(x)<0,解得x>$\frac{1}{2a}$,此时函数g(x)单调递减.
∴当x=$\frac{1}{2a}$时,函数g(x)取得极大值.
当x趋近于0与x趋近于+∞时,g(x)→-∞,
要使g(x)=0在区间(0,+∞)上有两个实数根,
则g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,解得0<a<$\frac{1}{2}$.
∴实数a的取值范围是(0,$\frac{1}{2}$).
故选:A.
点评 本题考查了利用导数研究函数的单调性极值,考查了等价转化方法,考查了推理能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 5 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “am2<bm2”是“a<b”的充分不必要条件 | |
B. | 命题“?x∈R,x2-x-1≤0”的否定是“$?{x_0}∈{R},{x_0}^2-{x_0}-1>0$” | |
C. | 若p,q均为假命题,则p∧q为假命题 | |
D. | 若ζ~B(4,0.25),则Dξ=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com