精英家教网 > 高中数学 > 题目详情
12.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为$\frac{\sqrt{3}}{3}$,M,N分别是AC.BC的中点,则EM,AN所成角的余弦值等于(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{6}$

分析 先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.

解答 解:设AB=2,作CO⊥面ABDE,
OH⊥AB,则CH⊥AB,∠CHO为二面角C-AB-D的平面角,
CH=$\sqrt{3}$,OH=CHcos∠CHO=1,
结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,
则AN=EM=CH=$\sqrt{3}$,$\overrightarrow{AN}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$),$\overrightarrow{EM}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\overrightarrow{AE}$,
∴$\overrightarrow{AN}•\overrightarrow{EM}$=$\frac{1}{2}$.
故EM,AN所成角的余弦值$\frac{\frac{1}{2}}{\sqrt{3}•\sqrt{3}}$=$\frac{1}{6}$,
故选D.

点评 本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求函数f(x)的最小正周期及对称轴方程;
(2)若对任意实数x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为e=$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为$\sqrt{2}$.
(1)求椭圆E的方程;
(2)斜率为k的直线l经过原点O,与椭圆E相交于不同的两点M,N,判断并说明在椭圆E上是否存在点P,使得△PMN的面积为$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在六面体ABCD-A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1
(1)证明:DD1∥BB1
(2)已知六面体ABCD-A1B1C1D1的棱长均为2,且BB1⊥平面ABCD,∠BAD=60°,M,N分别为棱A1B1,B1C1的中点,求四面体D-MNB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象如图所示,则φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AB=2,点D在棱B1C1上,且B1C1=4B1D
(Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B-A1D-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知φ∈(0,π),若函数f(x)=cos(2x+φ)为奇函数,则φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的程序框图,运行程序后,输出的结果等于(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有一个容量为100的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12,则实数m的值等于(  )
A.0.10B.0.11C.0.12D.0.13

查看答案和解析>>

同步练习册答案