精英家教网 > 高中数学 > 题目详情

某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量(件)之间近似满足关系:

(其中为小于96的正整常数)

(注:次品率P=,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量。

试将生产这种仪器每天的赢利T(元)表示为日产量(件的函数);

当日产量为多少时,可获得最大利润?

 

【答案】

时,当日产量为 时,利润最大;当时,日产量为84时,利润最大

【解析】

试题分析:解:(1)

(2)由(1)知显然只要考查时的情况。

,则

且当时,,当时,

所以当时,当日产量为 时,利润最大;当时,日产量为84时,利润最大。

考点:函数模型的运用

点评:解决的关键是根据题意,审清楚题意,表示利润函数来借助于函数的单调性来求解最值,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量x(件)之间近似满足关系:P=
1
96-x
,1≤x≤c,x∈N+
2
3
,x>c,x∈N+
(其中c为小于96的正整常数)
(注:次品率P=
次品数
总生产量
,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器每天的赢利T(元)表示为日产量x(件的函数);
(2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:P=
1
6-x
,1≤x≤c
2
3
,     x>c
(其中c为小于6的正常数)
(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品)
已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生一些次品,根据经验知道,次品数P(万件)与日产量x(万件)之间满足关系:P=
x2
6
,(1≤x<4)
x+
3
x
-
25
12
,(x≥4)
已知每生产l万件合格的元件可以盈利2万元,但每生产l万件次品将亏损1万元.(利润=盈利一亏损)
(1)试将该工厂每天生产这种元件所获得的利润T(万元)表示为日产量x(万件)的函数;
(2)当工厂将这种仪器的元件的日产量x定为多少时获得的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生较多次品,根据经验知道,次品数p(万件)与日产量x(万件)之间满足关系:p=
x2
6
,(1≤x<4)
x+
3
x
-
25
12
,(x≥4)
.已知每生产l万件合格的元件可以盈利20万元,但每产生l万件次品将亏损10万元.(实际利润=合格产品的盈利-生产次品的亏损)
(1)试将该工厂每天生产这种元件所获得的实际利润T(万元) 表示为日产量x(万件)的函数;
(2)当工厂将这种仪器的元件的日产量x(万件) 定为多少时获得的利润最大,最大利润为多少?

查看答案和解析>>

同步练习册答案