精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系设倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,直线与曲线相交于不同的两点

(1)若,求直线的普通方程和曲线的直角坐标方程;

(2)若的等比中项,其中,求直线的斜率.

【答案】(1),;(2).

【解析】

1)根据直线方程的点斜式可得直线的普通方程,根据互化公式可得曲线的直角坐标方程;(2)根据参数的几何意义以及等比中项列式可解得.

(1)因为,所以直线的参数方程为为参数).

可得直线的普通方程为.

因为曲线的极坐标方程可化为

所以曲线的直角坐标方程为.

(2)设直线上两点对应的参数分别为

代入曲线的直角坐标方程可得

化简得

因为

所以,解得.

因为

,可知,解得

所以直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线经过点,倾斜角为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出直线的参数方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;

(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国文化中有很多东西喜欢99的倍数.如:九连环、九阴白骨爪、降龙十八掌()、三十六计()、孙悟空七十二变()、八十一难()等.若一个三位数的各位数字之和为9,如207126,则这样的三位数共有________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)经过椭圆左焦点的直线(不经过点且不与轴重合)与椭圆交于两点,与直线:交于点,记直线的斜率分别为.则是否存在常数,使得向量 共线?若存在求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学生对食堂用餐的满意度,从全校在食堂用餐的3000名学生中,随机抽取100名学生对食堂用餐的满意度进行评分.根据学生对食堂用餐满意度的评分,得到如图所示的率分布直方图,

1)求频率分布直方图中的值

2)规定:学生对食堂用餐满意度的评分不低于80分为满意,试估计该校在食堂用餐的3000名学生中满意的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.

1)求第一次检测出的是次品且第二次检测出的是正品的概率;

2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查居民对城市共享单车的满意度,随机选取了100人进行问卷调查,并将问卷中的100人根据其满意度评分值按照分为5组,得到号如图所示的频率分布直方图.

(Ⅰ)求满意度分值不低于70分的人数.

(Ⅱ)已知满意度分值在内的男性与女性的比为3:4,为提高共享单车的满意度,现从满意度分值在的人中随机抽取2人进行座谈,求这2人中只有一位男性的概率.

查看答案和解析>>

同步练习册答案