精英家教网 > 高中数学 > 题目详情
11.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.(  )
A.3B.4C.5D.6、

分析 利用等比数列的求和公式即可得出.

解答 解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,
前n天打洞之和为$\frac{{2}^{n}-1}{2-1}$=2n-1,
同理,小老鼠每天打洞的距离$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$,
∴2n-1+2-$\frac{1}{{2}^{n-1}}$=10,
解得n∈(3,4),取n=4.
即两鼠在第4天相逢.
故选:B.

点评 本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的前n项和为Sn,且S4=6,2a3-a2=6,则a1等于(  )
A.-3B.-2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}满足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1).
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a,b,c分别是角A,B,C的对边,$\overrightarrow{m}$=($\sqrt{3}$a,c)与$\overrightarrow{n}$=(1+cosA,sinC)为共线向量.
(1)求角A;
(2)若3bc=16-a2,且S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=cosx+{2^x}-\frac{1}{2}(x<0)$与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,则a的取值范围是(  )
A.$(-∞,-\sqrt{2})$B.$(-∞,-\frac{{\sqrt{2}}}{2})$C.$(-\sqrt{2},\frac{{\sqrt{2}}}{2})$D.$(-∞,\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A是函数$f(x)={log_{\frac{1}{2}}}({x-1})$的定义域,集合B是函数g(x)=2x,x∈[-1,2]的值域.
(1)求集合A;
(2)求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆心在直线2x-y-6=0上的圆C与y轴交于两点A(0,-5),B(0,-3),则圆C的方程是(  )
A.(x-1)2+(y+4)2=2B.(x+1)2+(y-4)2=2C.(x-1)2+(y-4)2=2D.(x+1)2+(y+4)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,边长为2的正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求三棱锥B-ADE的体积.

查看答案和解析>>

同步练习册答案