精英家教网 > 高中数学 > 题目详情

【题目】已知在几何体中,四边形是边长为的正方形,且平面,且与平面所成角的正切值为.

(1)求证:平面平面

(2)求二面角的大小.

【答案】(1)详见解析;(2).

【解析】试题分析:(1)的中点,连接,结合已知条件证得平面,由勾股定理得,利用定理证得结果以点为原点,分别以所在直线为轴,建立如图所示的空间直角坐标系,求平面的法向量为,求平面的法向量为,运用公式求出结果

解析:(1)取的中点,连接

平面

在平面内的射影为

,又,∴

∴四边形为平行四边形,

与平面所成的角.

,设,连接.

平面

平面,∴.

.

,又

平面.

又∵平面.∴平面平面.

(2)∵两两垂直,以点为原点,分别以所在直线为轴,建立如图所示的空间直角坐标系.

设平面的法向量为

.

设平面的法向量为

,得.

设二面角的平面角为

,即二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 命题的否定是:

B. 命题中,若,则的否命题是真命题

C. 如果为真命题,为假命题,则为真命题,为假命题

D. 是函数的最小正周期为的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆的右顶点任意作直线,交抛物线两点,且,其中为坐标原点.

(1)试求椭圆的方程;

(2)过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于点,试求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题14分)

如图在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCDPAPDPA=PDEF分别为ADPB的中点.

(Ⅰ)求证:PEBC

(Ⅱ)求证:平面PAB平面PCD

(Ⅲ)求证:EF平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足以下三个条件:

①对任意实数,都有

在区间上为增函数.

1)判断函数的奇偶性,并加以证明;

2)求证:

3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:

x

4

5

7

8

y

2

3

5

6

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为的雾霾天数.

查看答案和解析>>

同步练习册答案