【题目】已知在几何体中,四边形是边长为的正方形,且平面,,且,与平面所成角的正切值为.
(1)求证:平面平面;
(2)求二面角的大小.
【答案】(1)详见解析;(2).
【解析】试题分析:(1) 取的中点,连接,,结合已知条件证得平面,由勾股定理得,利用定理证得结果以点为原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系,求平面的法向量为,求平面的法向量为,运用公式求出结果
解析:(1)取的中点,连接,,
∵平面,,
∴在平面内的射影为,
∵,又,∴,
∴四边形为平行四边形,
∴,
∴为与平面所成的角.
∵,
∴,,
∴,设,连接,.
∵,,,
∴平面,
∵平面,∴.
∵,,.
∴,
∴,又,
∴平面.
又∵平面.∴平面平面.
(2)∵,,两两垂直,以点为原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系.
则,,,,
则,,,
设平面的法向量为,
则即取,
得.
设平面的法向量为,
即
取,得.
设二面角的平面角为,
∵
,
∴,即二面角的大小为.
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=.
(1)试将污水净化管道的长度L表示为的函数,并写出定义域;
(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 命题的否定是:
B. 命题中,若,则的否命题是真命题
C. 如果为真命题,为假命题,则为真命题,为假命题
D. 是函数的最小正周期为的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(10分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.
(1)求四面体ABCD的体积;
(2)证明:四边形EFGH是矩形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆的右顶点任意作直线,交抛物线于,两点,且,其中为坐标原点.
(1)试求椭圆的方程;
(2)过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于点、、、,试求四边形的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:平面PAB⊥平面PCD;
(Ⅲ)求证:EF∥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的函数满足以下三个条件:
①对任意实数,都有;
②;
③在区间上为增函数.
(1)判断函数的奇偶性,并加以证明;
(2)求证:;
(3)解不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为的雾霾天数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com