精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,平面,四边形为菱形.

(Ⅰ)证明:平面

(Ⅱ)若,二面角的余弦值为,求三棱锥的体积.

【答案】(Ⅰ)证明见解析;(Ⅱ).

【解析】

)分别证明即可;

)以B为坐标原点,分别以BC所在的直线为x轴和z轴,以过B点垂直平面的直线为y轴,建立空间直角坐标系如图所示,首先算出平面的法向量的坐标,为平面的一个法向量,然后由二面角的余弦值为求出,然后可算出三棱锥的体积.

(Ⅰ)因为四边形为菱形,所以

因为平面平面,所以

又因为平面平面

所以平面

(Ⅱ)以B为坐标原点,分别以BC所在的直线为x轴和z轴,

以过B点垂直平面的直线为y轴,建立空间直角坐标系如图所示.

,则

.所以

设平面的法向量为,则

,得

由条件知为平面的一个法向量.

设二面角的平面角为,易知为锐角.

,解得

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1是某高架桥箱梁的横截面,它由上部路面和下部支撑箱两部分组成.如图2,路面宽度,下部支撑箱CDEF为等腰梯形(),且.为了保证承重能力与稳定性,需下部支撑箱的面积为,高度为2m,若路面AB侧边CFDE底部EF的造价分别为4a千元/m5a千元/m6a千元/ma为正常数),

1)试用θ表示箱梁的总造价y(千元);

2)试确定cosθ的值,使总造价最低?并求最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.3次投篮的人依次是甲、甲、乙的概率___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对某新型病毒,某科研机构已研发出甲乙两种疫苗,为比较两种疫苗的效果,选取100名志愿者,将他们随机分成两组,每组50人.第一组志愿者注射甲种疫苗,第二组志愿者注射乙种疫苗,经过一段时间后,对这100名志愿者进行该新型病毒抗体检测,发现有的志愿者未产生该新型病毒抗体,在未产生该新型病毒抗体的志愿者中,注射甲种疫苗的志愿者占.

产生抗体

未产生抗体

合计

合计

1)根据题中数据,完成列联表;

2)根据(1)中的列联表,判断能否有的把握认为甲乙两种疫苗的效果有差异.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形为平行四边形,三角形为等边三角形,已知.

1)求证:

2)求直线与面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)若,当时,函数内有唯一的极大值,求的取值范围;

2)若,试研究的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,二面角α1β的平面角的大小为60°AB1上的两个定点,且AB2CαDβ,满足AB与平面BCD所成的角为30°,且点A在平面BCD上的射影H在△BCD的内部(包括边界),则点H的轨迹的长度等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩共分五组,得到如下的频率分布表:

组号

分组

频数

频率

第一组

第二组

第三组

第四组

第五组

1)请写出频率分布表中的值,若同组中的每个数据用该组区间的中间值代替,请估计全体考生的平均成绩;

2)为了能选出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样的方法抽取名考生进入第二轮面试,求第组中每组各抽取多少名考生进入第二轮的面试;

3)在(2)的前提下,学校要求每个学生需从两个问题中任选一题作为面试题目,求第三组和第五组中恰好有个学生选到问题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2为椭圆C的左、右焦点,椭圆C过点M,且MF2F1F2.

1)求椭圆C的方程;

2)经过点P20)的直线交椭圆CAB两点,若存在点Qm0),使得|QA||QB|.

①求实数m的取值范围:

②若线段F1A的垂直平分线过点Q,求实数m的值.

查看答案和解析>>

同步练习册答案