精英家教网 > 高中数学 > 题目详情
14.如果a,b,c∈R,那么“b2>4ac”是“方程ax2+bx+c=0有两个不等实根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:若方程ax2+bx+c有两个不等实根,
则判别式△=b2-4ac>0,
则当b=1,a=0,满足“b2>4ac”,但方程ax2+bx+c=0等价为x+c=0,此时方程有两个不等实根不成立,
即“b2>4ac”是“方程ax2+bx+c=0有两个不等实根”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据一元二次方程根与判别式△的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)的图象在y轴上的截距为1,且它在右侧的第一个最大值点为(2,$\sqrt{2}$).求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-4ax+2a+6.
(1)若函数f(x)有零点,求实数a的范围;
(2)在(1)的条件下,求g(a)=2-a•|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设定义在R上的函数f(x)、g(x)满足$\frac{f(x)}{g(x)}$=ax,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则有穷数{$\frac{f(n)}{g(n)}$+2n-1}(n∈N*)的前8项和为(  )
A.574B.576C.1088D.1090

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2x3+x-5,求f(-2),f(4),f(b),f(b+h).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角α、β的终边分别与⊙O:x2+y2=1交于点P($\frac{4}{5}$,-$\frac{3}{5}$)、且OP⊥OQ,则sinα=-$\frac{3}{5}$,tanβ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0,且a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)探究函数f(x)在(1,+∞)上的单调性;
(3)若a=2,试求函数f(x)在[3,5]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x,求函数的振幅、角速度、初相位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.写出下列命题的否定,并判断其真假
(1)p:如果a,b,c成等差数列,则2b=a+c;
(2)q:等圆的面积相等,周长相等;
(3)r:任何三角形的外角都至少有两个钝角.

查看答案和解析>>

同步练习册答案