精英家教网 > 高中数学 > 题目详情

,函数,其中是自然对数的底数。
(1)判断在R上的单调性;
(2)当时,求上的最值。

(1)当在R上是单调递增函数,当时在上是单调递增函数,在上是单调递减函数(2)

解析试题分析:(1)对求导,得
       1分

时,
在R上是单调递增函数   3分
时,的两根分别为

时,

时,

上是单调递增函数;
上是单调递减函数   6分
(2)当时,
时,是单调递增函数        10分
时,
             12分
考点:函数单调性与最值
点评:当函数解析式中有参数时要对参数分情况讨论确定其单调性,函数在闭区间上的最值出在闭区间的端点或极值点处

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值; 
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求当时,函数的表达式;
(2)作出函数的图象,并指出其单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(
证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

查看答案和解析>>

同步练习册答案