精英家教网 > 高中数学 > 题目详情

【题目】下列四个判断: ①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为
②10名工人某天生产同一零件的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③从总体中抽取的样本为 ,则回归直线 必过点(
④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=4,则P(ξ>2)=0.2
其中正确的个数有(
A.4个
B.3个
C.2个
D.1个

【答案】D
【解析】解:①由题意可得这两个班的数学平均分为 ,故①错;②由题意可得a= (15+17+14+10+15+17+17+16+14+12)=14.7,b=15,c=17,

即有c>b>a,故②错;③由线性回归方程的特点,可得回归直线 必过样本中心点( ),故③对;④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ<﹣2)=0.5﹣0.4=0.1,

则P(ξ>2)=P(ξ<﹣2)=0.1,故④错.

故选:D.

【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an= ,若从{an}中提取一个公比为q的等比数列{a },其中k1=1且k1<k2<…<kn , kn∈N*,则满足条件的最小q的值为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=logax当x>2 时恒有|y|>1,则a的取值范围是(
A.
B.
C.1<a≤2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为(参考数据: ≈1.732,sin15°≈0.2588,sin75°≈0.1305)(
A.2.598,3,3.1048
B.2.598,3,3.1056
C.2.578,3,3.1069
D.2.588,3,3.1108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,曲线y=f(x)在点(e2 , f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).
(1)求f(x)的解析式及单调递减区间;
(2)若存在x0∈[e,+∞),使函数g(x)=aelnx+ lnxf(x)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0)x∈[0,4]的图象,且图象的最高点为 ;赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°
(1)求A,ω的值和M,P两点间的距离;
(2)应如何设计,才能使折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点A(0,3)和B(6,0).

(Ⅰ)求线段AB垂直平分线的方程;

(Ⅱ)若曲线C上的任意一点P满足2|PA|=|PB|,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且f(x+2)=f(x﹣2);当0≤x≤1时,f(x)= ,则f(1)+f(2)+f(3)+…+f等于(
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=4x的内接三角形的一个顶点在原点,三边上的高线都通过抛物线的焦点,求此三角形外接圆的方程.

查看答案和解析>>

同步练习册答案