精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且处切线垂直于轴.

1)求的值;

2)求函数上的最小值;

3)若恒成立,求满足条件的整数的最大值.

(参考数据

【答案】1;(20;(32.

【解析】

1)依题意,,由此即可求得的值;

2)求导,研究函数上的单调性,进而得到最值;

3)先分析,再证明当时满足条件即可得到的最大值.

1)因为处切线垂直于轴,则

因为,则,则

2)由题意可得,注意到

因此单调递减,

因此存在唯一零点使得,则单调递增,

单调递减,,则上恒成立

从而可得上单调递增,则

3)必要条件探路

因为恒成立,令,则

因为,由于为整数,则

因此

下面证明恒成立即可

①当时,由(1)可知,则

,设

,则单调递减

从而可得,由此可得恒成立.

②当时,下面先证明一个不等式:,设

,则单调递减,在单调递增

因此,那么

由此可得

因此单调递增,

上单调递增,因此

综上所述:的最大值整数值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,P的中点.

1)求平面将三棱柱分成的两部分的体积之比;

2)求平面与平面ABC所成二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为为上顶点,点为椭圆上一动点.

1)若,求直线轴的交点坐标;

2)设为椭圆的右焦点,过点轴垂直的直线为的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某市121-20AQI指数变化趋势:

下列叙述正确的是(

A.20天中AQI指数值的中位数略高于100

B.20天中的中度污染及以上的天数占

C.该市12月的前半个月的空气质量越来越好

D.总体来说,该市12月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:

(1)四面体EBCD的体积有最大值和最小值;

(2)存在某个位置,使得

(3)设二面角的平面角为,则

(4)AE的中点MAB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.

其中,正确说法的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,点P到两点(0,),(0,)的距离之和为4,设点P的轨迹为C,直线ykx+1A交于AB两点.

1)写出C的方程;

2)若,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

1)求的值;

2)试推断方程是否有实数解?若有实数解,请求出它的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(  )

A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分条件

C.命题“若xy,则sin x=sin y”的逆否命题为真命题

D.命题“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

同步练习册答案