精英家教网 > 高中数学 > 题目详情
如图,在平面斜坐标中∠xoy=45°,斜坐标定义为(其中分别为斜坐标系的x轴,y轴的单位向量),则点P的坐标为(x,y).若F1(-1,0),F2(1,0),且动点M(x,y)满足,则点M在斜坐标系中的轨迹方程( )

A.x=0
B.y=0
C.
D.
【答案】分析:欲求点M在斜坐标系中的轨迹方程,设P(x,y),只须求出其坐标x,y之间的关系即可,根据 建立等式关系,解之即可求出点M的轨迹方程.
解答:解:设M(x,y),∵F1(-1,0),F2(1,0),
∴由定义知,==
得:
||=||,

整理得:
故选C.
点评:本题是新信息题,读懂信息,斜坐标系是一个两坐标轴夹角为45°的坐标系,这是区别于以前学习过的坐标系的地方,本小题主要考查向量的模、平面向量的基本定理及其意义、轨迹方程等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面斜坐标中∠xoy=45°,斜坐标定义为
OP
=x0
e1
+y0
e2
(其中
e1
e2
分别为斜坐标系的x轴,y轴的单位向量),则点P的坐标为(x0,y0).若F1(-1,0),F2(1,0),且动点M(x,y)满足|
MF
1
|=|
MF
2
|
,则点M在斜坐标系中的轨迹方程(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省名校新高考研究联盟高三(上)12月联考数学试卷(理科)(解析版) 题型:选择题

如图,在平面斜坐标中∠xoy=45°,斜坐标定义为(其中分别为斜坐标系的x轴,y轴的单位向量),则点P的坐标为(x,y).若F1(-1,0),F2(1,0),且动点M(x,y)满足,则点M在斜坐标系中的轨迹方程( )

A.x=0
B.y=0
C.
D.

查看答案和解析>>

科目:高中数学 来源:2013年河北省衡水市冀州中学高三一轮检测数学试卷(理科)(解析版) 题型:选择题

如图,在平面斜坐标中∠xoy=45°,斜坐标定义为(其中分别为斜坐标系的x轴,y轴的单位向量),则点P的坐标为(x,y).若F1(-1,0),F2(1,0),且动点M(x,y)满足,则点M在斜坐标系中的轨迹方程( )

A.x=0
B.y=0
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010年福建省高考数学模拟试卷(文科)(解析版) 题型:选择题

如图,在平面斜坐标中∠xoy=45°,斜坐标定义为(其中分别为斜坐标系的x轴,y轴的单位向量),则点P的坐标为(x,y).若F1(-1,0),F2(1,0),且动点M(x,y)满足,则点M在斜坐标系中的轨迹方程( )

A.x=0
B.y=0
C.
D.

查看答案和解析>>

同步练习册答案