精英家教网 > 高中数学 > 题目详情
已知定义在R上的偶函数f(x)在[0,+∞)上是单调增函数,若f(1)<f(lgx),则x的范围为
(0,
1
10
)∪(10,+∞)
(0,
1
10
)∪(10,+∞)
分析:根据f(x)是偶函数,f(1)<f(lgx),可得f(1)<f(|lgx|),再利用f(x)在区间[0,+∞)上是单调增函数,可得1<|lgx|,从而可求x的取值范围.
解答:解:∵f(x)是偶函数,f(1)<f(lgx),
∴f(1)<f(|lgx|),
又∵f(x)在区间[0,+∞)上是单调增函数,
∴1<|lgx|,
∴lgx>1或lgx<-1,
解得x>10或0<x<
1
10

故答案为:(0,
1
10
)∪(10,+∞).
点评:本题重点考查函数的奇偶性、单调性,考查解抽象不等式,解题的关键是利用函数的性质化抽象不等式为具体不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则


  1. A.
    f(x)是奇函数,但不是偶函数
  2. B.
    f(x)是偶函数,但不是奇函数
  3. C.
    f(x)既是奇函数,又是偶函数
  4. D.
    f(x)既非奇函数,又非偶函

查看答案和解析>>

同步练习册答案