(本小题满分16分)已知函数.
(Ⅰ)当时,求证:函数在上单调递增;
(Ⅱ)若函数有三个零点,求的值;
(Ⅲ)若存在,使得,试求的取值范围.
(Ⅰ)同解析(Ⅱ)(Ⅲ)的取值范围为
Ⅰ)…………………………………3分
由于,故当时,,所以,
故函数在上单调递增 ……………………………………………………………5分
(Ⅱ)当时,因为,且在R上单调递增,
故有唯一解……………………………………………………………………7分
所以的变化情况如下表所示:
x | 0 | ||
- | 0 | + | |
递减 | 极小值 | 递增 |
又函数有三个零点,所以方程有三个根,
而,所以,解得 ……………………………11分
(Ⅲ)因为存在,使得,
所以当时,…………12分
由(Ⅱ)知,在上递减,在上递增,
所以当时,,
而,
记,因为(当时取等号),
所以在上单调递增,而,
所以当时,;当时,,
也就是当时,;当时,………………………14分
①当时,由,
②当时,由,
综上知,所求的取值范围为…………………………………………16分
科目:高中数学 来源: 题型:
(2010江苏卷)18、(本小题满分16分)
在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
查看答案和解析>>
科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题
(本小题满分16分)
函数,(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,对任意时,恒成立,求实数的范围;
(Ⅲ)如果,当“对任意恒成立”与“在内必有解”同时成立时,求 的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题
(本小题满分16分) 本题请注意换算单位
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;
(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?
查看答案和解析>>
科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题
(本小题满分16分)设命题:方程无实数根; 命题:函数
的值域是.如果命题为真命题,为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题
(本小题满分16分)
已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(Ⅰ)求f()的值;
(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com