精英家教网 > 高中数学 > 题目详情

【题目】已知直线平面,直线平面,有以下四个命题:( )

;②;③;④

其中正确命题的序号为

A. ②④ B. ③④ C. ①③ D. ①④

【答案】C

【解析】

①根据线面垂直的性质定理进行判断;②利用长方体模型,借助于里面的线面关系进行判断;

③根据两条平行线中的一条垂直于某个平面,则另一条也垂直于该平面的定理完成推理④也可以借助于长方体里面的线面关系,举反例推翻此结论.

①一条直线垂直于两平行平面中的一个平面,则该直线也垂直于另一平面,所以lβ,易知lm,故①正确;

②④在长方体ABCD﹣A1B1C1D1中,取底面为α,侧面ADA1D1β,直线AA1l,ADm,由此可以说明②④都是错误的;

③由两条平行线中的一条垂直于某个平面,则另一条也垂直于该平面可知mα,又mβ,所以αβ,故③正确.

故答案为:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为( ,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.

(1)求双曲线C2的方程;

(2)若直线lykx与双曲线C2恒有两个不同的交点AB,且,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 是等差数列,且b1=a1 , b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若 ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线的斜率为.

(1)求的值,并讨论上的单调性;

(2)设若对任意,总存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),则ω的一个可能取值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C所对的边分别为a,b,c,已知sinC=
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 若方程f(x)=a|x﹣1|,(a∈R)有且仅有两个不相等的实数解,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是为参数).

(1)求直线l和曲线的普通方程;

(2)设直线l和曲线交于两点,求

查看答案和解析>>

同步练习册答案