精英家教网 > 高中数学 > 题目详情
如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.
(1)详见解析;(2).

试题分析:(1)由的中点,连结交于,从而得到中点,再由三角形中位线知识得到线线平行,从而得到平面;(2) 过,连结.再根据已知条件证明平面.与平面的所成角的平面角.再解直角三角形,得到.
试题解析:(1)连结交于,连 中点,中点,
平面平面平面.     (6分)
(2)过,连结,               (7分)
平面平面
平面
平面平面
平面平面在平面内的射影,
与平面的所成角的平面角,又平面为直角三角形,,且. (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.

(1)求证:平面平面
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,平面⊥平面是线段上一点,

(Ⅰ)证明:⊥平面
(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是(      )
A.如果平面,那么平面内一定存在直线平行于平面
B.如果平面α不垂直于平面,那么平面内一定不存在直线垂直于平面
C.如果平面,平面,那么
D.如果平面,那么平面内所有直线都垂直于平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是(  )
A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行

查看答案和解析>>

同步练习册答案