精英家教网 > 高中数学 > 题目详情
17.已知方程x2+ax+b=0.
(1)若方程的解集只有一个元素,求实数a,b满足的关系式;
(2)若方程的解集有两个元素分别为1,3,求实数a,b的值.

分析 (1)利用根的判别式能注出实数a,b满足的关系式.
(2)利用韦达定理能求出实数a,b的值.

解答 解:(1)∵方程x2+ax+b=0的解集只有一个元素,
∴△=a2-4b=0,
∴实数a,b满足的关系式为a2-4b=0.…(6分)
(2)∵方程x2+ax+b=0的解集有两个元素分别为1,3,
∴$\left\{\begin{array}{l}{1+3=-a}\\{1×3=b}\end{array}\right.$,
解得a=-4,b=3…..(6分)

点评 本题考查实数间的关系式的求法,考查实数值的求法,是基础题,解题时要认真审题,注意根的判别式和韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在平行四边形ABCD中,P,Q分别是BC和CD的中点.
(1)若AB=2,AD=1,∠BAD=60°,求$\overrightarrow{AB}$•$\overrightarrow{AC}$及cos∠BAC的余弦值;
(2)若$\overrightarrow{AC}$=λ$\overrightarrow{AP}$+$μ\overrightarrow{BQ}$,求λ+μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y为非零实数,代数式$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$-8($\frac{x}{y}$+$\frac{y}{x}$)+15的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.y=cos$\frac{x}{3}$(x∈R)的最小正周期是(  )
A.$\frac{π}{2}$B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|-1<x<2},B={x|-2≤x<0},则A∩B=(  )
A.{x|-1<x<0}B.{x|-2≤x<2}C.{x|-2<x<2}D.{x|x<-2,或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:
(1)估计该校男生的人数;
(2)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题:两条直线垂直同一个平面,那么这两条直线平行.将这个命题用符号语言表示为:若直线m⊥平面α,直线n⊥平面α,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=9x-a•3x+1+a2(x∈[0,1],a∈R),记f(x)的最大值为g(a).
(Ⅰ)求g(a)解析式;
(Ⅱ)若对于任意t∈[-2,2],任意a∈R,不等式g(a)≥-m2+tm恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设m,n为两条不同的直线,α为平面,则下列结论正确的是(  )
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m∥α⇒n∥αD.m∥n,m⊥α⇒n⊥α

查看答案和解析>>

同步练习册答案