精英家教网 > 高中数学 > 题目详情
已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB.求证:直线L过定点,并求出该定点的坐标.
(3)试利用所学圆锥曲线知识参照(2)设计一个与直线L过定点有关的数学问题,并解答所提问题.
【答案】分析:(1)解法(A):点P与点F(2,0)的距离比它到直线x+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线x+2=0的距离相等.由抛物线定义得:点P在以F为焦点直线x+2=0为准线的抛物线上,由此能求出抛物线方程.
解法(B):设动点P(x,y),则.当x≤-4时,(x-2)2+y2=(-x-6)2,此时曲线不存在.当x>-4时,(x-2)2+y2=(x+2)2,化简得:y2=8x.
(2)设直线L:y=kx+b与抛物线交予点(x1,y1),(x2,y2),(a)若L斜率存在,设为k,,由此能导出直线为y=k(x-8),所以L过定点(8,0).
(3)(逆命题)如果直线L过定点(8,0),且与抛物线y2=8x相交于A、B两点,O为坐标原点.求证:.   
证明:设其方程为y=k(x-8),设A(x1,y1),B(x2,y2),联立方程组,消去y,并整理得k2x2-(16k2+8)x+64k2=0,,x1x2=64,y1y2=k(x1-8)•k(x2-8)=k2x1x2-8k2(x1+x2)+64k2=-64.所以
解答:解:(1)解法(A):点P与点F(2,0)的距离比它到直线x+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线x+2=0的距离相等.(1分)
由抛物线定义得:点P在以F为焦点直线x+2=0为准线的抛物线上,(1分)
抛物线方程为y2=8x.(2分)
解法(B):设动点P(x,y),则
当x≤-4时,(x-2)2+y2=(-x-6)2
化简得:y2=8(x+2),显然x≥-2,而x≤-4,此时曲线不存在.
当x>-4时,(x-2)2+y2=(x+2)2,化简得:y2=8x.
(2)设直线L:y=kx+b与抛物线交予点(x1,y1),(x2,y2),(a)若L斜率存在,设为k,,,(1分),即,b=-8k,(2分)
直线为y=k(x-8),所以L过定点(8,0)(1分)
(3)(逆命题)如果直线L过定点(8,0),且与抛物线y2=8x相交于A、B两点,O为坐标原点.求证:.   
证明:∵直线L过定点(8,0),
∴设其方程为y=k(x-8),设A(x1,y1),B(x2,y2),
联立方程组,消去y,并整理得k2x2-(16k2+8)x+64k2=0,
,x1x2=64,
y1y2=k(x1-8)•k(x2-8)
=k2x1x2-8k2(x1+x2)+64k2
=-64.

点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与圆锥曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.
(1)求曲线C的方程.    
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB.求证:直线L过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区二模)已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB.求证:直线L过定点,并求出该定点的坐标.
(3)试利用所学圆锥曲线知识参照(2)设计一个与直线L过定点有关的数学问题,并解答所提问题.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.
(1)求曲线C的方程.    
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB.求证:直线L过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案