精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为

1)求椭圆的标准方程;

2)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

【答案】1;(2)存在,

【解析】试题分析:(1)由已知条件推导出,由此能求出椭圆的标准方程;(2)直线与椭圆方程联立方程,得到关于的一元二次方程,由根的判别式和韦达定理结合已知条件能求出实数的取值范围.

试题解析:(1)设椭圆的方程为,半焦距为.依题意

由右焦点到右顶点的距离为,得解得.所以,所以椭圆的标准方程是

2)解:存在直线,使得成立.理由如下:

,化简得

,则

,所以

化简得,,将代入中,

解得.又由

从而,所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一个不透明的盒子中,放有标号分别为的四个大小相同的小球,现从这个盒子中,有放回地先后取得两个小球,其标号分别为

1)求事件的概率;

(2)求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角三角形的顶点坐标,直角顶点,顶点轴上,点为线段的中点,三角形外接圆的圆心为

(1)求边所在直线方程;

(2)求圆的方程;

(3)直线过点且倾斜角为,求该直线被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示

1的值,并根据频率分布直方图,估计红包金额的众数;

2以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面,边长为的菱形,又底面,且,点分别是棱的中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查调查结果如下表:

阅读名著的本数

1

2

3

4

5

男生人数

3

1

2

1

3

女生人数

1

3

3

1

2

1试根据上述数据,求这个班级女生阅读名著的平均本数;

2若从阅读本名著的学生中任选人交流读书心得,求选到男生和女生各人的概率;

3试比较该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料 ,五合板 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料 ,五合板 ,生产每个书橱需要方木料 ,五合板 ,出售一张书桌可获利润 元,出售一个书橱可获利润 元.

(1)如果只安排生产书桌,可获利润多少?

(2)如果只安排生产书橱,可获利润多少?

(3)怎祥安排生产可使所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)对任意,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在区间上的函数,如果对任意,都有成立,那么称函数在区间上可被替代,称为替代区间.给出以下问题:

在区间上可被替代;

可被替代的一个替代区间

在区间可被替代,则

,则存在实数,使得在区间上被替代; 其中真命题有

查看答案和解析>>

同步练习册答案