精英家教网 > 高中数学 > 题目详情
已知等比数列{an}各项都是正数,a1=3,a1+a2+a3=21,Sn为{an}的前n项和,
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公差为3的等差数列,求数列{bn}的通项公式及其前n项和Tn
【答案】分析:(Ⅰ)设等比数列{an}的公比为q,代入已知可得关于q的方程,解之可得q,代入等比数列的通项公式和求和公式可得;(Ⅱ)可得bn=3×2n-1+3n-2,分别由等差数列和等比数列的求和公式可得.
解答:解:(Ⅰ)设等比数列{an}的公比为q,则q>0,
代入已知可得3+3q+3q2=21,解得q=2,或q=-3(舍去),
故an=3×2n-1,Sn==3×2n-1-3;
(Ⅱ)∵{bn-an}是首项为1,公差为3的等差数列,
∴bn-an=1+3(n-1)=3n-2,即bn=3×2n-1+3n-2
故Tn=3(1+2+22+…+2n-1)+(1+4+7+…+3n-2)
=+=3×2n-3+
点评:本题考查等比数列和等差数列的求和公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案