【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益函数为R(x)= ,其中x是仪器的产量(单位:台);
(1)将利润f(x)表示为产量x的函数(利润=总收益﹣总成本);
(2)当产量x为多少台时,公司所获利润最大?最大利润是多少元?
科目:高中数学 来源: 题型:
【题目】已知两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于坐标原点O到直线l:x﹣2y+m=0的距离的一半.
(1)求m的值;
(2)判断直线l与圆 的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成组第组,第组,第组,第组,第组,得到的频率分布直方图如图所示,已知第组有人.
(1)求该组织的人数;
(2)若在第组中用分层抽样的方法抽取名志愿者参加某社区的宣传活动,应从第组各抽取多少名志愿者?
(3)在(2)的条件下,该组织决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组至少有名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .(x>0)
(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)若当x>0时,f(x)> 恒成立,求正整数k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆的焦距为2,且过点.
(1)求椭圆的方程;
(2)若点分别是椭圆的左右顶点,直线经过点且垂直与轴,点是椭圆上异于的任意一点,直线交于点.
①设直线的斜率为,直线的斜率为,求证:为定值;
②设过点垂直于的直线为 ,求证:直线过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴, 轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且
(1)若,求椭圆的标准方程
(2)若求椭圆的离心率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com