精英家教网 > 高中数学 > 题目详情
已知f(n)=log2(1+
1n
)(n∈N+)
,对正整数k,如果f(n)满足:f(1)+f(2)+f(3)+…+f(k+1)为整数,则称k为“好数”,那么区间[1,129]内所有“好数”的和S=
240
240
分析:由题设知k=2n-2,再由2n-1≤129,解得1≤n≤7,故[1,129]内所有“好数”的和S=(2-2)+(22-2)+(23-2)+…+(27-2),由此能求出结果.
解答:解:∵f(n)=log2(1+
1
n
)(n∈N+)

∴f(1)=log22=1,
f(1)+f(2)+f(3)=log2(
2
1
×
3
2
×
4
3
)
=log24=2,
f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)
=log2(
2
1
×
3
2
×
4
3
×
5
4
×
6
5
×
7
6
×
8
7
)
=log28=3.

由题设知k=2n-2,
由2n-1≤129,解得1≤n≤7,
∴[1,129]内所有“好数”的和
S=(2-2)+(22-2)+(23-2)+…+(27-2)
=
2(1-27)
1-2
-14=240.
故答案为:240.
点评:本题考查数列的前n项和的求法,解题的关键是利用题设条件推导出[1,129]内所有“好数”的和S=(2-2)+(22-2)+(23-2)+…+(27-2).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2
按从大到小排列正确的是z>x>y;
③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤-3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的实数a的取值范围是0<a<
1
2

⑥关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

其中正确的有
③⑤⑥
③⑤⑥
(请把所有满足题意的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的a的取值范围是(0,
1
2
);
⑥将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2

按从大到小排列正确的是z>x>y,其中正确的有
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•杨浦区二模)已知函数f(n)=log(n+1)(n+2)(n为正整数),若存在正整数k满足:f(1)•f(2)•f(3)…f(n)=k,那么我们将k叫做关于n的“对整数”.当n∈[1,100]时,则“对整数”的个数为
5
5
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(n)=log(n+1)(n+2)(n∈N*),若存在正整数k满足:f(1)•f(2)•f(3)•…•f(n)=k,那么我们把k叫做关于n的“对整数”,则当n∈[1,10]时,“对整数”共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn=1+
1
2
+
1
3
+…+
1
n
,(n∈N*),设f (n)=S2n+1-Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式f(n)>[logm(m-1)]2-
11
20
[log(m-1)m]2
恒成立.

查看答案和解析>>

同步练习册答案