【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:
321 421 292 925 274 632 802 478 598 663
531 297 396 021 406 318 235 113 507 965
据此估计,小张三次射击恰有两次命中十环的概率为( )
A.0.30B.0.35C.0.40D.0.45
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的离心率为,右准线方程为,、分别是椭圆的左、右顶点,过右焦点且斜率为的直线与椭圆相交于,两点.
(1)求椭圆的标准方程.
(2)记、的面积分别为、,若,求的值;
(3)设线段的中点为,直线与右准线相交于点,记直线、、的斜率分别为、、,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求曲线的直角坐标方程;
(2)设过点且倾斜角为的直线和曲线交于两点,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数且 )曲线的参数方程为(为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.
(1)求与的交点到极点的距离;
(2)设与交于点,与交于点,当在上变化时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,点,
中恰有三点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆上的动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率存在,并记为,试问的面积是否为定值?若是,求出该值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是__________
①存在点,使得平面平面;
②存在点,使得平面平面;
③的面积可能等于;
④若分别是在平面与平面的正投影的面积,则存在点,使得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知椭圆E的中心在原点,长轴长为8,椭圆在X轴上的两个焦点与短轴的一个顶点构成等边三角形.
求椭圆的标准方程;
过椭圆内一点的直线与椭圆E交于不同的A,B两点,交直线于点N,若,求证:为定值,并求出此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com