精英家教网 > 高中数学 > 题目详情

【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生09之间取整数值的随机数,指定2468表示命中十环,013579表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:

321 421 292 925 274 632 802 478 598 663

531 297 396 021 406 318 235 113 507 965

据此估计,小张三次射击恰有两次命中十环的概率为(

A.0.30B.0.35C.0.40D.0.45

【答案】C

【解析】

由小张20组随机数中三次射击恰有两次命中十环的共有8组,结合古典概型概率计算公式,即可求解.

由题意,小张三次射击恰有两次命中十环的421 292 274 632 802 478 663

406 共有8组,所以小张三次射击恰有两次命中十环的概率为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,右准线方程为分别是椭圆的左、右顶点,过右焦点且斜率为的直线与椭圆相交于两点.

1)求椭圆的标准方程.

2)记的面积分别为,若,求的值;

3)设线段的中点为,直线与右准线相交于点,记直线的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求曲线的直角坐标方程;

(2)设过点且倾斜角为的直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数且 )曲线的参数方程为为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.

(1)求的交点到极点的距离;

(2)设交于点,交于点,当上变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD与四边形BDEF均为菱形,,且

求证:平面BDEF

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点

中恰有三点在椭圆上.

(1)求椭圆的方程;

(2)设是椭圆上的动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率存在,并记为,试问的面积是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是__________

①存在点,使得平面平面

②存在点,使得平面平面

的面积可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若样本平均数是4,方差是2,则另一样本的平均数和方差分别为( )

A. 12,2 B. 14,6 C. 12,8 D. 14,18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知椭圆E的中心在原点,长轴长为8,椭圆在X轴上的两个焦点与短轴的一个顶点构成等边三角形.

求椭圆的标准方程;

过椭圆内一点的直线与椭圆E交于不同的A,B两点,交直线于点N,若,求证:为定值,并求出此定值.

查看答案和解析>>

同步练习册答案