精英家教网 > 高中数学 > 题目详情
“x>1”是“ln(ex+1)>1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、非充分非必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义结合不等式的性质进行判断即可.
解答: 解:由ln(ex+1)>1得ex+1>e,
若x>1,则ex+1>e+1>e成立,
当ex+1>e,得ex>e-1,
则x>ln(e-1),
∵ln(e-1)<lne<1,
∴x>1不一定成立,
故“x>1”是“ln(ex+1)>1”的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)-2tx在区间[-1,5]上是单调函数,求实数t的取值范围;
(3)若关于x的方程f(x)=x+m有区间(-1,2)上有唯一实数根,求实数m的取值范围(注:相等的实数根算一个).

查看答案和解析>>

科目:高中数学 来源: 题型:

“因为
a
=(1,0),
b
=(0,-1),所以
a
b
=(1,0)•(0,-1)=1×0+0×(-1)=0,所以
a
b
”中,大前提是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α-
π
2
)=
3
5
,则cos(2π-2α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为第四象限角,则2a的终边在第
 
象限,
3a的终边在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log23.9,b=log20.7,c=2,则(  )
A、b<a<c
B、a<b<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P在正方体ABCD-A1B1C1D1 的对角线BD1上,且cos∠PDA=
6
4
,则直线DP与CC1所成角的大小(  )
A、75°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(x-
π
2
),g(x)=ex•f′(x),其中e为自然对数的底数.
(Ⅰ)求曲线y=g(x)在点(0,g(0))处的切线方程;
(Ⅱ)若对任意x∈[-
π
2
,0],不等式g(x)≥x•f(x)+m恒成立,求实数m的取值范围;
(Ⅲ)试探究当x∈[
π
4
π
2
]时,方程g(x)=x•f(x)的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=sin(
π
2
-x)在点A(-
π
3
1
2
)处的切线方程为
 

查看答案和解析>>

同步练习册答案