精英家教网 > 高中数学 > 题目详情
5.如图所示,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且斜边AB=2$\sqrt{2}$,侧棱AA1=4,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ∈R).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当λ为何值时,B1E⊥面CDE.

分析 (1)只需证明CD⊥平面ABB1A1即可得出结论;
(2)B1E⊥ED时,B1E⊥面CDE,此时,△AED∽△A1B1E,即可得出结论.

解答 证明:(1)∵AC=BC,点 D 为 AC 的中点,
∴CD⊥AB,
∵AA1⊥平面 ABC,CD?平面 ABC,
∴AA1⊥CD,
又AA1?平面ABB1A1,AB?平面ABB1A1,AA1∩AB=A,
∴CD⊥平面ABB1A1
又B1E?平面ABB1A1
∴CD⊥B1E.
(2)由题意,CD⊥平面A1B,B1E?平面A1B,∴B1E⊥CD,
B1E⊥ED时,B1E⊥面CDE,此时,△AED∽△A1B1E,
∴$\frac{{A}_{1}E}{2\sqrt{2}}=\frac{\sqrt{2}}{AE}$,∴A1E•AE=8,
∴4λ•(8-4λ)=8,
∴λ=1-$\frac{\sqrt{2}}{2}$.

点评 本题考查了线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了,甲说:“是乙不小心闯的祸”乙说:“是丙闯的祸”,丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,x2-2x+5≤0”的否定为(  )
A.?x∈R,x2-2x+5≥0B.?x∉R,x2-2x+5≤0C.?x∈R,x2-2x+5>0D.?x∉R,x2-2x+5>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=\sqrt{2x-4}+lg(5-x)$的定义域为A,且B={x|x>4}.
(1)求集合A;
(2)求A∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1>0}\\{x<2}\\{x+y-1>0}\end{array}\right.$,若z=2x-2y-1,则z的取值范围为(  )
A.(-$\frac{5}{3}$,5)B.(-$\frac{5}{3}$,0)C.[0,5]D.[-$\frac{5}{3}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆心在直线$y=\frac{1}{3}x$上的圆C与y轴的正半轴相切,圆C截x轴所得的弦长为$4\sqrt{2}$,则圆C的标准方程为(  )
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个由圆柱和正四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.4π+4B.$4π+\frac{4}{3}$C.2π+4D.$2π+\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点M在圆C1:x2+y2+2x+8y-8=0上,点N在圆C2:x2+y2-4x-5=0上,则|MN|的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正三棱锥P-ABC的底面ABC的边长为a,高为h,在正三棱锥内任取一点M,使得VP-ABC>2VM-ABC的概率是(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案