精英家教网 > 高中数学 > 题目详情

已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.

(1)不可能(2)(ⅰ)q=-1(ⅱ)T2011=2012S2011-2011

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的各项均为正数,其前项和为,且,数列是首项和公比均为的等比数列.
(1)求证数列是等差数列;
(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列的前四项和成等比.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为公差不为零的等差数列,首项的部分项、 、恰为等比数列,且.
(1)求数列的通项公式(用表示);
(2)设数列的前项和为, 求证:是正整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22.
(1)求Sn
(2)这个数列的前多少项的和最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和
(1)求数列的通项公式,并证明是等差数列;
(2)若,求数列的前项和.

查看答案和解析>>

同步练习册答案