精英家教网 > 高中数学 > 题目详情
5.函数${f_n}(x)={({\frac{n+3}{n}})^2}+\frac{n}{n+3}(x+1)(n∈{N^*})$,当n=1,2,3,…时,fn(x)的零点依次记作x1,x2,x3,…,则$\lim_{n→∞}{x_n}$=-2.

分析 先求出函数的零点,xn=-$\frac{(n+3)^3}{n^3}$-1,再求极限.

解答 解:令fn(x)=0得,
$(\frac{n+3}{n})^2$+$\frac{n}{n+3}$(x+1)=0,
解得xn=-$\frac{(n+3)^3}{n^3}$-1,其中,$\underset{lim}{n→∞}$$\frac{(n+3)^3}{n^3}$=1,
所以,$\underset{lim}{n→∞}$xn=-$\underset{lim}{n→∞}$$\frac{(n+3)^3}{n^3}$-1=-1-1=-2,
故填:-2.

点评 本题主要考查了极限及其运算,以及函数零点的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知二次函数f(x)=x2-(m-1)x+2m在[0,1]上有且只有一个零点,则实数m的取值范围为(  )
A.(-2,0)B.(-1,0)C.(-2,-1)D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶数又在区间(0,+∞)上单调递减的是(  )
A.$y=\frac{1}{x}$B.y=exC.y=-x2D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=|lnx|,设0<a<b,且f(a)=f(b),则a+2b的取值范围是(  )
A.[3,+∞)B.(3,+∞)C.$[2\sqrt{2},+∞)$D.$(2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lnx-ax+$\frac{1-a}{x}$-1.
(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的渐近线和圆x2+y2-6y+8=0相切,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1).
(1)求AB直线方程;
(2)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为真命题;
②命题“?x∈N,x3>x2”的否定是“?x0∈N,使x${\;}_{0}^{3}$>x${\;}_{0}^{2}$”;
③“b=0”是“函数f(x)=ax2+bx+c为偶函数”的充要条件;
④“正四棱锥的底面是正方形”的逆命题为真命题;
⑤a>1是(a-2)(a-1)>0的必要不充分条件.
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)设g(x)=f(x)-2cos2x,求函数g(x)在区间$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

同步练习册答案