精英家教网 > 高中数学 > 题目详情
已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.  
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
(1)(2)所求k的值为2

试题分析:解:(1)由题意设抛物线方程为,其准线方程为,   2分
∵A(4,m)到焦点的距离等于A到其准线的距离
 ∴此抛物线的方程为   6分
(2)由消去    8分
∵直线与抛物线相交于不同两点A、B,则有    10分
解得解得(舍去)
∴所求k的值为2    12分
点评:解决该试题的关键是能运用抛物线的定义得到方程,联立方程组通过判别式确定交点情况,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是

(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是为参数)。
求极点在直线上的射影点的极坐标;
分别为曲线、直线上的动点,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知点,参数,点Q在曲线C:上.
(1)求在直角坐标系中点的轨迹方程和曲线C的方程;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三点,曲线上任一点满足=
(1) 求曲线的方程;
(2) 设是(1)中所求曲线上的动点,定点,线段的垂直平分线与轴交于点,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设为抛物线的焦点,为抛物线上任意一点,已为圆心,为半径画圆,与轴负半轴交于点,试判断过的直线与抛物线的位置关系,并证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
椭圆的左、右焦点分别为,点满足
(1)求椭圆的离心率
(2)设直线与椭圆相交于两点,若直线与圆相交于两点,且,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,点,直线都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若的大小为                      

查看答案和解析>>

同步练习册答案